Details of the Researcher

PHOTO

Hayato Chiba
Section
Advanced Institute for Materials Research
Job title
Professor
Degree
  • 博士(情報学)(京都大学)

  • 修士(情報学)(京都大学)

Research History 5

  • 2019/04 - Present
    Tohoku University Advanced Institute for Materials Research

  • 2013/09 - 2019/03
    Kyushu University

  • 2011/04 - 2013/08
    Kyushu University

  • 2009/10 - 2011/03
    Kyushu University

  • 2009/04 - 2009/09
    Kyoto University

Education 2

  • Kyoto University

    2005/04 - 2009/03

  • Kyoto University Faculty of Engineering School of Engineering Science

    2001/04 - 2005/03

Research Interests 2

  • differential equations

  • dynamical systems theory

Research Areas 1

  • Natural sciences / Mathematical analysis /

Awards 3

  1. 九州大学 講義賞

    2018/08

  2. 文部科学省表彰 若手科学者賞

    2016/04

  3. 藤原洋数理科学賞 奨励賞

    2013/10

Papers 30

  1. Semi-analytical computation of bifurcation of orbits near collinear libration point in the restricted three-body problem Peer-reviewed

    Phys. D 470 134404 2024/10

  2. Weights, Kovalevskaya exponents and the Painleve property Peer-reviewed

    Hayato Chiba

    Ann. Inst. Fourier 74 (2) 818-848 2024/05

    DOI: 10.5802/aif.3591  

  3. Generalized eigenvalues of the Perron-Frobenius operators of symbolic dynamical systems

    Hayato Chiba, Masahiro Ikeda, Isao Ishikawa

    SIAM Journal on Applied Dynamical Systems 22 (4) 2825-2855 2023

    Publisher: Society for Industrial & Applied Mathematics (SIAM)

    DOI: 10.1137/22m1476204  

    eISSN: 1536-0040

  4. Bifurcations and patterns in the Kuramoto model with inertia Peer-reviewed

    J. of Nonlinear Science 2023

  5. Stability and bifurcation of mixing in the Kuramoto model with inertia Peer-reviewed

    SIAM J. on Math. Analy 54 1797-1819 2022

  6. Normal Forms of C^\infty Vector Fields based on the Renormalization Group, Peer-reviewed

    H. Chiba

    J. Math. Phys. 62 062703 2021

  7. A Hopf bifurcation in the Kuramoto-Daido model Peer-reviewed

    H. Chiba

    J. Diff. Equ 280 546-570 2021

  8. Bifurcation of the neuronal population dynamics of the modified theta model: transition to macroscopic gamma oscillation Peer-reviewed

    K. Kotani, A. Akao, H.Chiba

    Physica D 416 132789 2021

  9. The mean field analysis ofthe Kuramoto model on graphs II. Asymptotic stability of the incoherentstate, center manifold reduction, and bifurcations Peer-reviewed

    H.Chiba, G. S. Medve

    Discret. Contin. Dyn. S.-A 39 (7) 3897-3921 2019

  10. Bifurcations in the Kuramoto model on graphs Peer-reviewed

    H.Chiba, G. S. Medvedev, M. S. Muzuhara

    Chaos 28 2018

  11. The mean field analysis for the Kuramoto model on graphs I. The mean field equation and transition point formulas Peer-reviewed

    H.Chiba, G. S. Medve

    Discret. Contin. Dyn. S.-A 2018

  12. A spectral theory of linear operators on rigged Hilbert spaces under analyticity conditions II : applications to Schrodinger operators Peer-reviewed

    Hayato Chiba

    Kyushu Journal of Math. 2018

  13. A Center Manifold Reduction of the Kuramoto-Daido Model with a Phase-Lag Peer-reviewed

    Hayato Chiba

    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS 16 (3) 1235-1259 2017

    DOI: 10.1137/16M1094129  

    ISSN: 1536-0040

  14. Multi-Poisson Approach to the Painleve Equations: from the Isospectral Deformation to the Isomonodromic Deformation Peer-reviewed

    Hayato Chiba

    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS 13 2017

    DOI: 10.3842/SIGMA.2017.025  

    ISSN: 1815-0659

  15. The Third, Fifth and Sixth Painleve Equations on Weighted Projective Spaces Peer-reviewed

    Hayato Chiba

    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS 12 2016

    DOI: 10.3842/SIGMA.2016.019  

    ISSN: 1815-0659

  16. The first, second and fourth Painleve equations on weighted projective spaces Peer-reviewed

    Hayato Chiba

    JOURNAL OF DIFFERENTIAL EQUATIONS 260 (2) 1263-1313 2016/01

    DOI: 10.1016/j.jde.2015.09.020  

    ISSN: 0022-0396

    eISSN: 1090-2732

  17. Kovalevskaya exponents and the space of initial conditions of a quasi-homogeneous vector field Peer-reviewed

    Hayato Chiba

    JOURNAL OF DIFFERENTIAL EQUATIONS 259 (12) 7681-7716 2015/12

    DOI: 10.1016/j.jde.2015.08.035  

    ISSN: 0022-0396

    eISSN: 1090-2732

  18. A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model Peer-reviewed

    Hayato Chiba

    ERGODIC THEORY AND DYNAMICAL SYSTEMS 35 762-834 2015/05

    DOI: 10.1017/etds.2013.68  

    ISSN: 0143-3857

    eISSN: 1469-4417

  19. A spectral theory of linear operators on rigged Hilbert spaces under analyticity conditions Peer-reviewed

    Hayato Chiba

    ADVANCES IN MATHEMATICS 273 324-379 2015/03

    DOI: 10.1016/j.aim.2015.01.001  

    ISSN: 0001-8708

    eISSN: 1090-2082

  20. Reduction of weakly nonlinear parabolic partial differential equations Peer-reviewed

    Hayato Chiba

    JOURNAL OF MATHEMATICAL PHYSICS 54 (10) 2013/10

    DOI: 10.1063/1.4824014  

    ISSN: 0022-2488

    eISSN: 1089-7658

  21. CONTINUOUS LIMIT AND THE MOMENTS SYSTEM FOR THE GLOBALLY COUPLED PHASE OSCILLATORS Peer-reviewed

    Hayato Chiba

    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS 33 (5) 1891-1903 2013/05

    DOI: 10.3034/dcds.2013.33.1891  

    ISSN: 1078-0947

  22. Center manifold reduction for large populations of globally coupled phase oscillators Peer-reviewed

    Hayato Chiba, Isao Nishikawa

    CHAOS 21 (4) 2011/12

    DOI: 10.1063/1.3647317  

    ISSN: 1054-1500

  23. Periodic orbits and chaos in fast-slow systems with Bogdanov-Takens type fold points Peer-reviewed

    Hayato Chiba

    JOURNAL OF DIFFERENTIAL EQUATIONS 250 (1) 112-160 2011/01

    DOI: 10.1016/j.jde.2010.09.022  

    ISSN: 0022-0396

  24. Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators Peer-reviewed

    Masataka Kuwamura, Hayato Chiba

    CHAOS 19 (4) 2009/12

    DOI: 10.1063/1.3270262  

    ISSN: 1054-1500

  25. Stability of an [N/2]-dimensional invariant torus in the Kuramoto model at small coupling Peer-reviewed

    Hayato Chiba, Diego Pazo

    PHYSICA D-NONLINEAR PHENOMENA 238 (13) 1068-1081 2009/06

    DOI: 10.1016/j.physd.2009.03.005  

    ISSN: 0167-2789

  26. Lie equations for asymptotic solutions of perturbation problems of ordinary differential equations Peer-reviewed

    Hayato Chiba, Masatomo Iwasa

    JOURNAL OF MATHEMATICAL PHYSICS 50 (4) 2009/04

    DOI: 10.1063/1.3097304  

    ISSN: 0022-2488

  27. Simplified renormalization group method for ordinary differential equations Peer-reviewed

    Hayato Chiba

    JOURNAL OF DIFFERENTIAL EQUATIONS 246 (5) 1991-2019 2009/03

    DOI: 10.1016/j.jde.2008.11.012  

    ISSN: 0022-0396

  28. Extension and Unification of Singular Perturbation Methods for ODEs Based on the Renormalization Group Method Peer-reviewed

    Hayato Chiba

    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS 8 (3) 1066-1115 2009

    DOI: 10.1137/090745957  

    ISSN: 1536-0040

  29. Approximation of center manifolds on the renormalization group method Peer-reviewed

    Hayato Chiba

    JOURNAL OF MATHEMATICAL PHYSICS 49 (10) 2008/10

    DOI: 10.1063/1.2996290  

    ISSN: 0022-2488

  30. C-1 Approximation of Vector Fields Based on the Renormalization Group Method Peer-reviewed

    Hayato Chiba

    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS 7 (3) 895-932 2008

    DOI: 10.1137/070694892  

    ISSN: 1536-0040

Show all ︎Show first 5

Misc. 2

  1. 可積分系とPainleve方程式 (特集 物理学における数学的発想 : なぜ数学の考え方が必要になるか)

    千葉 逸人

    数理科学 54 (4) 44-49 2016/04

    Publisher: サイエンス社

    ISSN: 0386-2240

  2. Linear stability of the incoherent solution and the transition formula for the Kuramoto-Daido model (Applications of Renormalization Group Methods in Mathematical Sciences)

    CHIBA Hayato

    RIMS Kokyuroku Bessatsu 21 109-128 2010/12

    Publisher: Kyoto University

    ISSN: 1881-6193

Books and Other Publications 8

  1. 同期現象の数理

    2025/01

  2. 数学セミナー

    千葉 逸人

    日本評論社 2024/10

  3. 正解の無いクイズ

    テレビ東京 2024/09

  4. 小峠英二のなんて美だ!

    テレビ局 TOKYO MX 2024/09

  5. 数学はあらゆる分野で役に立つ!

    朝日新聞 2024/09

  6. 解くための微分方程式と力学系理論

    千葉逸人

    現代数学社 2021/11

  7. ベクトル解析からの幾何学入門

    千葉 逸人

    現代数学社 2007/11

  8. これならわかる工学部で学ぶ数学

    千葉 逸人

    プレアデス出版 2003/07

Show all Show first 5

Research Projects 6

  1. 脳多元自発活動の創発と遷移による脳のデザインビルド

    上阪 直史, 水野 秀信, 早川 隆, 千葉 逸人

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業

    Category: 学術変革領域研究(B)

    Institution: 東京医科歯科大学

    2022/05/20 - 2025/03/31

    More details Close

    本領域は、脳内自発活動の概念を大きく転換させ、先駆的ニューラルネットワークモデルを構築することを目的とする。脳内自発活動を中心に置いた脳発達の数理モデルを構築するために最適な実験科学者と理論科学者を結集した研究領域を立ち上げた。本領域の研究を推進するために、総括班は各計画研究チームの研究活動を推進し、ポストアワードを一元的に管理するハブ機能を担う。本領域では研究者の研究生産性に重点を置き、統括班がPDCAサイクルを回すことで研究者が研究に集中できる環境をつくる。 2022年度においては以下の成果を達成した。 1)領域開始より定期的に領域会議を開き、各計画研究の進捗状況の確認及び今後の方針を共有し、目標実現に向けて進めた。また来年度に実施予定の国際シンポジウムについて方針を決定した。 2) オンラインでの連絡システムを構築し、こまめに進捗管理をし、各チームの連携がしやすい環境を整えた。 3)広報活動の一環として、領域ホームページ(https://designbuild.kuma-u.jp/)の立ち上げを行った。最新の研究成果を発信する基盤を構築した。

  2. 無限グラフ上の結合振動子系のダイナミクスの研究

    千葉 逸人

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業

    Category: 基盤研究(C)

    Institution: 東北大学

    2019/04/01 - 2023/03/31

    More details Close

    前年度に引き続き、相互作用する振動子が起こす同期現象についての標準的な数学モデルである蔵本モデルについて起こる同期現象の解析を行った。従来の研究では相互作用する振動子たちの自然振動数が従う確率密度関数がひとつの極大値をもつひと山型の問題を考えることが主流であった。本研究においてはそれを拡張し、自然振動子の確率密度関数が2つの極大値を持つ場合(いわゆるふた山型)の場合を考察した。この研究において、方程式を線形化して得られる線形作用素の一般化固有値が虚軸上をまたぐことにより、ホップ分岐が生じ、これにより非同期状態から同期状態である周期解が生じることを厳密に証明した。これは円周上をまわる振動子群において、2つのクラスターが発生し、それらが互いに逆向きに回転する新しい現象である。そのような分岐現象が起こることの数学的な証明を与えたことは世界に先駆けた新しい結果である。またその証明において、本研究者が構築した一般化スペクトル理論が本質的に重要な役割を果たしていることも意義深い。すなわち、虚軸をまたぐ固有値は厳密な意味の固有値ではなく一般化固有値であり、従来の理論では解析できない新しい結果である。 <BR> 本研究の結果は、 "A Hopf bifurcation in the Kuramoto-Daido model", J. Diff. Equ. Vol.280, no 15, 546-570, (2021). として国際誌に受理された。

  3. Spectrum of transfer operators for hyperbolic dynamical systems

    Tsujii Masato

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research

    Category: Grant-in-Aid for Scientific Research (B)

    Institution: Kyushu University

    2015/04/01 - 2020/03/31

    More details Close

    Dynamical system is a mathematical framework that describes time evolutions that appear in many branches of sciences. It is known that a simple dynamical system can produce very complicated time evolution. Modern dynamical system theory has been developed to study such a phenomenon, called Chaos. In this study, we study chaotic dynamical system through the spectrum of transfer operators which describe evolution of observables. Anosov flows are one of main example of chaotic flows and has been studied extensively. Still the spectral properties transfer operators for Anosov flows was not well understood. During the period of this study we were able to invent a new approach to the problem and obtained a few decisive results about spectral properties of Anosov flows.

  4. A study on the generalized spectral theory and its applications to evolution equations

    Chiba Hayato

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research

    Category: Grant-in-Aid for Young Scientists (B)

    Institution: Kyushu University

    2013/04/01 - 2017/03/31

    More details Close

    In this project, the generalized spectral theory, which is a generalization of the standard spectral theory, is developed. By using this theory, we can estimate an asymptotic behavior of solutions of evolution equations whose linear part has a continuous spectrum. This theory is applied to the Kuramoto model and the Schrodinger equation. In particular, for the Kuramoto model, the Kuramoto conjecture is proved.

  5. Entrainment ability maximization in nonlinear oscillators by using calculus of variations, and its applications to practical design problems

    TANAKA Hisaaki, TOKUDA Isao, CHIBA Hayato

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research

    Category: Grant-in-Aid for Scientific Research (B)

    Institution: The University of Electro-Communications

    2011/04/01 - 2014/03/31

    More details Close

    Since injection-locking improves frequency stability in the oscillator, its researches have been steadily progressed for various applications. However, as far as we know, any design methodology for optimizing such injection-locking ability has not yet been established. In this study, using a newly developed optimization theory by calculus of variations it becomes possible to maximize locking ranges of several practically important oscillators; CMOS ring oscillators and Class-E oscillators for power electronics, under realistic constraints.

  6. A bifurcationtheory of infinitedimensional dynamical systems and its applications to coupled oscillators

    CHIBA Hayato

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research

    Category: Grant-in-Aid for Young Scientists (B)

    Institution: Kyushu University

    2010 - 2012

    More details Close

    A system of coupled oscillators called the Kuramoto model, which describes synchronization phenomena, has been investigated. I have established a new spectral theory of linear operators based on a Gelfand triplet, and it is applied to prove the Kuramoto conjecture on a bifurcation structure ofthe Kuramoto model. It is revealed that a synchronization occurs if the couplingstrength is sufficiently large

Show all Show first 5

Social Activities 1

  1. テレビ出演など多数