Details of the Researcher

PHOTO

Satoshi Tanaka
Section
Graduate School of Science
Job title
Professor
Degree
  • 博士(理学)(愛媛大学)

  • 修士(理学)(富山大学)

e-Rad No.
90331959
Profile

主に境界値問題について研究しています。

Research History 5

  • 2020/04 - Present
    Tohoku University Graduate School of Science Department of Mathematics Professor

  • 2014/04 - 2020/04
    Okayama University of Science Faculty of Science Professor

  • 2009/04 - 2014/03
    Okayama University of Science Faculty of Science Associate Professor

  • 2004/04 - 2009/03
    Okayama University of Science Faculty of Science Lecturer

  • 2000/04 - 2004/03
    Hachinohe National College of Technology Lecturer

Education 4

  • Ehime University Faculty of Science

    1999/04 - 2000/03

  • Ehime University

    1996/04 - 1999/03

  • Toyama University

    1994/04 - 1996/03

  • Toyama University Faculty of Science Department of Mathematics

    1990/04 - 1994/03

Committee Memberships 12

  • Differential Equations and Dynamical Systems Editor

    2022/07 - Present

  • Tohoku Mathematical Journal Editor

    2020/04 - Present

  • Differential Equations & Applications Editor

    2017/01 - Present

  • ヨーロッパ数学会 Reviewer for zbMATH

    2007/09 - Present

  • アメリカ数学会 Reviewer for Mathematical Reviews

    2007/05 - Present

  • 雑誌「数学通信」, 非常任編集委員

    2024/03 - 2025/02

  • 日本数学会東北支部, 代議員

    2024/03 - 2025/02

  • 雑誌「数学通信」 常任編集委員

    2023/03 - 2024/02

  • 日本数学会東北支部 評議員

    2023/03 - 2024/02

  • 日本数学会 2016年度地方区代議員

    2016/03 - 2017/02

  • FONDECYT FONDECYT Regular 2016 grant competition 審査員

    2015/10 - 2015/12

  • Croatian Science Foundation Croatian Science Foundation 審査員

    2013/02 - 2013/05

Show all ︎Show first 5

Professional Memberships 2

  • 日本応用数理学会

    2021/09 - Present

  • THE MATHEMATICAL SOCIETY OF JAPAN

Research Interests 5

  • box-counting dimension

  • elliptic differential equation

  • bifurcation

  • boundary value problem

  • ordinary differential equation

Research Areas 1

  • Natural sciences / Mathematical analysis /

Awards 1

  1. The 5th Hukuhara Prize (2013)

    2013/12 Division of Functional Equations, The Mathematical Society of Japan Research on boundary value problems and qualitative properties of solutions to ordinary differential equations and research on neutral differential equations

Papers 54

  1. Two point boundary value problems for ordinary differential systems with generalized variable exponents operators Peer-reviewed

    Marta García-Huidobro, Raúl Manásevich, Jean Mawhin, Satoshi Tanaka

    Nonlinear Analysis: Real World Applications 81 104196-104196 2025/02

    Publisher: Elsevier BV

    DOI: 10.1016/j.nonrwa.2024.104196  

    ISSN: 1468-1218

  2. Influence of nonlinearity to box-counting dimensions of spiral orbits for two-dimensional differential systems Peer-reviewed

    Masakazu Onitsuka, Satoshi Tanaka

    Bulletin des Sciences Mathématiques 192 103417-103417 2024/05

    Publisher: Elsevier BV

    DOI: 10.1016/j.bulsci.2024.103417  

    ISSN: 0007-4497

  3. Asymptotic behavior and monotonicity of radial eigenvalues for the p-Laplacian Peer-reviewed

    Ryuji Kajikiya, Mieko Tanaka, Satoshi Tanaka

    Journal of Differential Equations 387 (5) 496-531 2024/04

    DOI: 10.1016/j.jde.2024.01.027  

  4. Periodic solutions for nonlinear systems of Ode's with generalized variable exponents operators Peer-reviewed

    M. García-Huidobro, R. Manásevich, J. Mawhin, S. Tanaka

    Journal of Differential Equations 388 34-58 2024

    Publisher: Elsevier BV

    DOI: 10.1016/j.jde.2023.12.040  

    ISSN: 0022-0396

  5. An eigenvalue problem for a variable exponent problem, via topological degree Peer-reviewed

    Raul Manasevich, Satoshi Tanaka

    Discrete and Continuous Dynamical Systems 2023

    DOI: 10.3934/dcds.2023134  

  6. Multiple existence of positive even solutions for a two point boundary value problem on some very narrow possible parameter set Peer-reviewed

    Naoki Shioji, Satoshi Tanaka, Kohtaro Watanabe

    Journal of Mathematical Analysis and Applications 513 (1) 126182-126182 2022/09

    Publisher: Elsevier BV

    DOI: 10.1016/j.jmaa.2022.126182  

    ISSN: 0022-247X

  7. A note on the asymptotic behavior of radial solutions to quasilinear elliptic equations with a Hardy potential Peer-reviewed

    Kenta Itakura, Satoshi Tanaka

    Proceedings of the American Mathematical Society, Series B 8 (25) 302-310 2021/10/12

    Publisher: American Mathematical Society (AMS)

    DOI: 10.1090/bproc/100  

    eISSN: 2330-1511

    More details Close

    <p>The quasilinear elliptic equation with a Hardy potential <disp-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal d normal i normal v left-parenthesis StartAbsoluteValue x EndAbsoluteValue Superscript alpha Baseline StartAbsoluteValue nabla u EndAbsoluteValue Superscript p minus 2 Baseline nabla u right-parenthesis plus StartFraction mu Over StartAbsoluteValue x EndAbsoluteValue Superscript p minus alpha Baseline EndFraction StartAbsoluteValue u EndAbsoluteValue Superscript p minus 2 Baseline u equals 0 in bold upper R Superscript upper N Baseline minus StartSet 0 EndSet"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">d</mml:mi> <mml:mi mathvariant="normal">i</mml:mi> <mml:mi mathvariant="normal">v</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>α<!-- α --></mml:mi> </mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi mathvariant="normal">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>p</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mi mathvariant="normal">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>+</mml:mo> <mml:mfrac> <mml:mi>μ<!-- μ --></mml:mi> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>p</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:mfrac> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>p</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mspace width="1em" /> <mml:mtext>in</mml:mtext> <mml:mtext> </mml:mtext> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> <mml:mo>−<!-- − --></mml:mo> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mn>0</mml:mn> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\begin{equation*} {\mathrm {div } }(|x|^\alpha |\nabla u|^{p-2}\nabla u) + \frac {\mu }{|x|^{p-\alpha } }|u|^{p-2}u = 0 \quad \text {in} \ {\mathbf {R } }^N-\{0\} \end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> is considered, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N element-of bold upper N"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">N</mml:mi> </mml:mrow> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">N\in {\mathbf {N } }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p greater-than 1"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">p&gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha element-of bold upper R"> <mml:semantics> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\alpha \in {\mathbf {R } }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mu element-of bold upper R minus StartSet 0 EndSet"> <mml:semantics> <mml:mrow> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mn>0</mml:mn> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mu \in {\mathbf {R } }-\{0\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this note, the asymptotic behaviors of radial solutions are obtained divided into three case <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mu greater-than StartAbsoluteValue left-parenthesis upper N minus p plus alpha right-parenthesis slash p EndAbsoluteValue Superscript p"> <mml:semantics> <mml:mrow> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo>&gt;</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>p</mml:mi> <mml:mo>+</mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">\mu &gt;|(N-p+\alpha )/p|^p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mu equals StartAbsoluteValue left-parenthesis upper N minus p plus alpha right-parenthesis slash p EndAbsoluteValue Superscript p"> <mml:semantics> <mml:mrow> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>p</mml:mi> <mml:mo>+</mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">\mu =|(N-p+\alpha )/p|^p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mu greater-than StartAbsoluteValue left-parenthesis upper N minus p plus alpha right-parenthesis slash p EndAbsoluteValue Superscript p"> <mml:semantics> <mml:mrow> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo>&gt;</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>p</mml:mi> <mml:mo>+</mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">\mu &gt;|(N-p+\alpha )/p|^p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This equation also appears as the Euler-Lagrange equation related to the weighted Hardy inequality <disp-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="integral Underscript normal upper Omega Endscripts StartAbsoluteValue nabla u left-parenthesis x right-parenthesis EndAbsoluteValue Superscript p Baseline StartAbsoluteValue x EndAbsoluteValue Superscript alpha Baseline d x greater-than-or-equal-to StartAbsoluteValue StartFraction upper N minus p plus alpha Over p EndFraction EndAbsoluteValue Superscript p Baseline integral Underscript normal upper Omega Endscripts StartAbsoluteValue u left-parenthesis x right-parenthesis EndAbsoluteValue Superscript p Baseline StartAbsoluteValue x EndAbsoluteValue Superscript alpha minus p Baseline d x"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> </mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi mathvariant="normal">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>α<!-- α --></mml:mi> </mml:msup> <mml:mi>d</mml:mi> <mml:mi>x</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mstyle scriptlevel="0"> <mml:mrow class="MJX-TeXAtom-OPEN"> <mml:mo maxsize="2.470em" minsize="2.470em">|</mml:mo> </mml:mrow> </mml:mstyle> <mml:mfrac> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>p</mml:mi> <mml:mo>+</mml:mo> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:mfrac> <mml:msup> <mml:mstyle scriptlevel="0"> <mml:mrow class="MJX-TeXAtom-CLOSE"> <mml:mo maxsize="2.470em" minsize="2.470em">|</mml:mo> </mml:mrow> </mml:mstyle> <mml:mi>p</mml:mi> </mml:msup> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> </mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>α<!-- α --></mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> <mml:mi>d</mml:mi> <mml:mi>x</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\begin{equation*} \int _\Omega |\nabla u(x)|^p |x|^\alpha dx \ge \Biggl | \frac {N-p+\alpha }{p} \Biggr |^p \int _\Omega |u(x)|^p |x|^{\alpha -p} dx \end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u element-of upper C Subscript c Superscript normal infinity Baseline left-parenthesis bold upper R Superscript upper N Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mi>c</mml:mi> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">u \in C_c^\infty ({\mathbf {R } }^N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N minus p plus alpha not-equals 0"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>p</mml:mi> <mml:mo>+</mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mo>≠<!-- ≠ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">N-p+\alpha \ne 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega"> <mml:semantics> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:annotation encoding="application/x-tex">\Omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a domain of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper R Superscript upper N"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> <mml:annotation encoding="application/x-tex">{\mathbf {R } }^N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p> <p>The rectifiability of oscillatory solutions to the ordinary differential equation with one-dimensional <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Laplacian is also studied, and an answer to an open problem is given.</p>

  8. Uniqueness of positive radial solutions of superlinear elliptic equations in annuli Peer-reviewed

    Naoki Shioji, Satoshi Tanaka, Kohtaro Watanabe

    Journal of Differential Equations 284 522-545 2021/05

    Publisher: Elsevier BV

    DOI: 10.1016/j.jde.2021.02.047  

    ISSN: 0022-0396

  9. Rectifiability of orbits for two-dimensional nonautonomous differential systems Peer-reviewed

    Masakazu Onitsuka, Satoshi Tanaka

    Electronic Journal of Qualitative Theory of Differential Equations 2021 (18) 1-23 2021/03

    Publisher: University of Szeged

    DOI: 10.14232/ejqtde.2021.1.18  

    eISSN: 1417-3875

  10. On the uniqueness of solutions of a semilinear equation in an annulus Peer-reviewed

    Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka

    Communications on Pure & Applied Analysis 0 (0) 0-0 2021

    Publisher: American Institute of Mathematical Sciences (AIMS)

    DOI: 10.3934/cpaa.2021029  

    ISSN: 1553-5258

  11. Perturbations of planar quasilinear differential systems Peer-reviewed

    Kenta Itakura, Masakazu Onitsuka, Satoshi Tanaka

    Journal of Differential Equations 271 216-253 2021/01

    DOI: 10.1016/j.jde.2020.08.024  

    ISSN: 0022-0396

    eISSN: 1090-2732

  12. Positive Solutions for Systems of Quasilinear Equations with Non-homogeneous Operators and Weights Invited Peer-reviewed

    Marta Garcia-Huidobro, Raul Manasevich, Satoshi Tanaka

    Advanced Nonlinear Studies 20 (2) 293-310 2020

  13. Symmetry-breaking bifurcation for the one-dimensional Henon equation Peer-reviewed

    Satoshi Tanaka

    Communications in Contemporary Mathematics 21 (1) 2019

    DOI: 10.1142/S0219199717500973  

  14. Rectifiable and nonrectifiable solution curves of half-linear differential systems Peer-reviewed

    Yuki Naito, Mervan Pašić, Satoshi Tanaka

    Mathematica Slovaca 68 (3) 575-590 2018/06/26

    Publisher: De Gruyter Open Ltd

    DOI: 10.1515/ms-2017-0126  

    ISSN: 1337-2211 0139-9918

  15. A complete classification of bifurcation diagrams for a class of (p,q)-Laplace equations Peer-reviewed

    Ryuji Kajikiya, Inbo Sim, Satoshi Tanaka

    Journal of Mathematical Analysis and Applications 462 (2) 1178-1194 2018/06/15

    Publisher: Academic Press Inc.

    DOI: 10.1016/j.jmaa.2018.02.049  

    ISSN: 1096-0813 0022-247X

  16. Box-counting dimension of oscillatory solutions to the Emden-Fowler equation Peer-reviewed

    Takanao Kanemitsu, Satoshi Tanaka

    Differential Equations & Applications 10 (2) 239-250 2018

    DOI: 10.7153/dea-2018-10-17  

  17. Box-counting dimension of solution curves for a class of two-dimensional nonautonomous linear differential systems Peer-reviewed

    Masakazu Onitsuka, Satoshi Tanaka

    Mathematical Communications 23 (1) 43-60 2018

  18. Symmetry-breaking bifurcation for the Moore–Nehari differential equation Peer-reviewed

    Ryuji Kajikiya, Inbo Sim, Satoshi Tanaka

    NoDEA. Nonlinear Differential Equations and Applications 25 (6) 2018

    DOI: 10.1007/s00030-018-0545-3  

  19. Symmetry-breaking bifurcation for the one-dimensional Liouville type equation Peer-reviewed

    Satoshi Tanaka

    JOURNAL OF DIFFERENTIAL EQUATIONS 263 (10) 6953-6973 2017/11

    DOI: 10.1016/j.jde.2017.07.033  

    ISSN: 0022-0396

    eISSN: 1090-2732

  20. CHARACTERISTIC EQUATION FOR AUTONOMOUS PLANAR HALF-LINEAR DIFFERENTIAL SYSTEMS Peer-reviewed

    M. Onitsuka, S. Tanaka

    ACTA MATHEMATICA HUNGARICA 152 (2) 336-364 2017/08

    DOI: 10.1007/s10474-017-0722-6  

    ISSN: 0236-5294

    eISSN: 1588-2632

  21. Rectifiability of Solutions for a Class of Two-Dimensional Linear Differential Systems Peer-reviewed

    Masakazu Onitsuka, Satoshi Tanaka

    MEDITERRANEAN JOURNAL OF MATHEMATICS 14 (2) 2017/04

    DOI: 10.1007/s00009-017-0854-5  

    ISSN: 1660-5446

    eISSN: 1660-5454

  22. BIFURCATION OF POSITIVE SOLUTIONS FOR THE ONE-DIMENSIONAL (p, q)-LAPLACE EQUATION Peer-reviewed

    Ryuji Kajikiya, Mieko Tanaka, Satoshi Tanaka

    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS 2017 (Paper No. 107) 2017/04

    ISSN: 1072-6691

  23. Nonrectifiable oscillatory solutions of second order linear differential equations Peer-reviewed

    Takanao Kanemitsu, Satoshi Tanaka

    Archivum Mathematicum 53 (4) 193-201 2017

    Publisher: Masarykova Universita

    DOI: 10.5817/AM2017-4-193  

    ISSN: 1212-5059 0044-8753

  24. Uniqueness of sign-changing radial solutions for Delta u - u plus vertical bar u vertical bar(p-1)u=0 in some ball and annulus Peer-reviewed

    Satoshi Tanaka

    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 439 (1) 154-170 2016/07

    DOI: 10.1016/j.jmaa.2016.02.036  

    ISSN: 0022-247X

    eISSN: 1096-0813

  25. Non-monotone positive solutions of second-order linear differential equations: existence, nonexistence and criteria Peer-reviewed

    Mervan Pasic, Satoshi Tanaka

    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS 2016 (93) 2016

    DOI: 10.14232/ejqtde.2016.1.93  

    ISSN: 1417-3875

  26. Three positive solutions for one-dimensional p-Laplacian problem with sign-changing weight Peer-reviewed

    Inbo Sim, Satoshi Tanaka

    APPLIED MATHEMATICS LETTERS 49 42-50 2015/11

    DOI: 10.1016/j.aml.2015.04.007  

    ISSN: 0893-9659

  27. The exact multiplicity of positive solutions for a class of two-point boundary-value problems with the one-dimensional p-Laplacian Peer-reviewed

    Inbo Sim, Satoshi Tanaka

    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS 144 (1) 187-203 2014/02

    DOI: 10.1017/S0308210512000443  

    ISSN: 0308-2105

    eISSN: 1473-7124

  28. Morse index and symmetry-breaking for positive solutions of one-dimensional Hénon type equations Peer-reviewed

    Satoshi Tanaka

    Journal of Differential Equations 255 (7) 1709-1733 2013/10/01

    DOI: 10.1016/j.jde.2013.05.029  

    ISSN: 0022-0396 1090-2732

  29. Fractal oscillations near the domain boundary of radially symmetric solutions of p-Laplace equations Peer-reviewed

    Yuki Naito, Mervan Pasic, Darko Zubrinic, Satoshi Tanaka

    Contemporary Mathematics 601 325-343 2013

  30. Fractal oscillations of chirp functions and applications to second-order linear differential equations Peer-reviewed

    Mervan Pašić, Satoshi Tanaka

    International Journal of Differential Equations 2013 (Art. ID 857410) 2013

    DOI: 10.1155/2013/857410  

    ISSN: 1687-9643 1687-9651

  31. Fractal oscillations of self-adjoint and damped linear differential equations of second-order Peer-reviewed

    Mervan Pasic, Satoshi Tanaka

    APPLIED MATHEMATICS AND COMPUTATION 218 (5) 2281-2293 2011/11

    DOI: 10.1016/j.amc.2011.07.047  

    ISSN: 0096-3003

  32. Rectifiable oscillations of self-adjoint and damped linear differential equations of second-order Peer-reviewed

    Mervan Pasic, Satoshi Tanaka

    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 381 (1) 27-42 2011/09

    DOI: 10.1016/j.jmaa.2011.03.051  

    ISSN: 0022-247X

  33. EVENTUALLY POSITIVE SOLUTIONS OF FIRST ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH A DEVIATING ARGUMENT Peer-reviewed

    T. Sakamoto, S. Tanaka

    ACTA MATHEMATICA HUNGARICA 127 (1-2) 17-33 2010/04

    DOI: 10.1007/s10474-010-9064-3  

    ISSN: 0236-5294

  34. On the uniqueness of positive solutions for two-point boundary value problems of Emden-Fowler differential equations Peer-reviewed

    Satoshi Tanaka

    Mathematica Bohemica 135 (2) 189-198 2010

  35. Uniqueness and nonuniqueness of nodal radial solutions of sublinear elliptic equations in a ball Peer-reviewed

    Satoshi Tanaka

    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS 71 (11) 5256-5267 2009/12

    DOI: 10.1016/j.na.2009.04.009  

    ISSN: 0362-546X

  36. An identity for a quasilinear ODE and its applications to the uniqueness of solutions of BVPs Peer-reviewed

    Satoshi Tanaka

    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 351 (1) 206-217 2009/03

    DOI: 10.1016/j.jmaa.2008.09.069  

    ISSN: 0022-247X

  37. Sharp conditions for the existence of sign-changing solutions to equations involving the one-dimensional p-Laplacian Peer-reviewed

    Yuki Naito, Satoshi Tanaka

    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS 69 (9) 3070-3083 2008/11

    DOI: 10.1016/j.na.2007.09.002  

    ISSN: 0362-546X

  38. Uniqueness of nodal radial solutions of superlinear elliptic equations in a ball Peer-reviewed

    Satoshi Tanaka

    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS 138 (6) 1331-1343 2008

    DOI: 10.1017/S0308210507000431  

    ISSN: 0308-2105

  39. ON THE UNIQUENESS OF SOLUTIONS WITH PRESCRIBED NUMBERS OF ZEROS FOR A TWO-POINT BOUNDARY VALUE PROBLEM Peer-reviewed

    Satoshi Tanaka

    DIFFERENTIAL AND INTEGRAL EQUATIONS 20 (1) 93-104 2007/01

    ISSN: 0893-4983

  40. Existence and asymptotic behavior of solutions of nonlinear neutral differential equations Peer-reviewed

    S Tanaka

    MATHEMATICAL AND COMPUTER MODELLING 43 (5-6) 536-562 2006/03

    DOI: 10.1016/j.mcm.2005.08.009  

    ISSN: 0895-7177

  41. Forced oscillation of certain hyperbolic equations with continuous distributed deviating arguments. Peer-reviewed

    Satoshi Tanaka, Norio Yoshida

    Annales Polonici Mathematici 85 (1) 37-54 2005

    DOI: 10.4064/ap85-1-4  

  42. On the existence of multiple solutions of the boundary value problem for nonlinear second-order differential equations Peer-reviewed

    Y Naito, S Tanaka

    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS 56 (6) 919-935 2004/03

    DOI: 10.1016/j.na.2003.10.020  

    ISSN: 0362-546X

  43. Oscillation criteria for a class of second order forced neutral differential equations. Peer-reviewed

    Satoshi Tanaka

    Mathematics Journal of Toyama University 27 71-90 2004

    Publisher: Toyama University

    ISSN: 0916-6009

  44. A oscillation theorem for a class of even order neutral differential equations Peer-reviewed

    S Tanaka

    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 273 (1) 172-189 2002/09

    DOI: 10.1016/S0022-247X(02)00235-4  

    ISSN: 0022-247X

  45. Oscillation of solutions of first-order neutral differential equations Peer-reviewed

    Satoshi Tanaka

    Hiroshima Mathematical Journal 32 (1) 79-85 2002

    Publisher: Hiroshima University

    ISSN: 0018-2079

  46. Existence of positive solutions for a class of higher order neutral functional differential equations Peer-reviewed

    S Tanaka

    CZECHOSLOVAK MATHEMATICAL JOURNAL 51 (3) 573-583 2001

    ISSN: 0011-4642

  47. Oscillation of solutions of even order neutral differential equations Peer-reviewed

    Satoshi Tanaka

    Dynamic Systems and Applications 9 (3) 353-360 2000

  48. Oscillatory and nonoscillatory solutions of neutral differential equations Peer-reviewed

    Satoshi Tanaka

    Annales Polonici Mathematici 73 (2) 169-184 2000

    DOI: 10.4064/ap-73-2-169-184  

  49. Existence of positive solutions of higher order nonlinear neutral differential equations Peer-reviewed

    Satoshi Tanaka

    Rocky Mountain Journal of Mathematics 30 (3) 1139-1149 2000

    DOI: 10.1216/rmjm/1021477264  

    ISSN: 0035-7596

  50. A necessary and sufficient condition for the oscillation in a class of even order neutral differential equations Peer-reviewed

    Satoshi Tanaka

    Electronic Journal of Qualitative Theory of Differential Equations 1-27 2000

    Publisher: University of Szeged

    DOI: 10.14232/ejqtde.2000.1.4  

    ISSN: 1417-3875

  51. Existence of positive solutions for a class of first-order neutral functional differential equations Peer-reviewed

    S Tanaka

    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 229 (2) 501-518 1999/01

    ISSN: 0022-247X

  52. Oscillations of solutions to parabolic equations with deviating arguments Peer-reviewed

    Satoshi Tanaka, Norio Yoshida

    Tamkang Journal of Mathematics 28 (3) 169-181 1997

  53. Oscillation properties of solutions of second order neutral differential equations with deviating arguments Peer-reviewed

    Satoshi Tanaka

    Analysis (Germany) 17 (2-3) 99-112 1997

    DOI: 10.1524/anly.1997.17.23.99  

    ISSN: 2196-6753 0174-4747

  54. Forced oscillations of firs orde nonlinear neutral differential equations Peer-reviewed

    Tanaka S

    Journal of Applied Analysis 3 (1) 23-41 1997

Show all ︎Show first 5

Misc. 12

  1. Symmetry-breaking bifurcation of positive solutions to a one-dimensional Liouville type equation

    田中 敏

    数理解析研究所講究録「実領域における常微分方程式の定性的研究」 1993 100-106 2016/04

  2. On the nonuniqueness of positive solutions of boundary value problems for superlinear Emden-Fowler equations (Mathematical Analysis and Functional Equations from New Points of View)

    Tanaka Satoshi

    RIMS Kokyuroku 1750 70-76 2011/07

    Publisher: Kyoto University

    ISSN: 1880-2818

  3. On the uniqueness and nonuniqueness of nodal radial solutions of sublinear elliptic equations in a ball (Dynamics of Functional Equations and Mathematical Models)

    Tanaka Satoshi

    RIMS Kokyuroku 1637 39-46 2009/04

    Publisher: Kyoto University

    ISSN: 1880-2818

  4. An identity for a quasilinear ordinary differential equation and its applications

    田中 敏

    数理解析研究所講究録「関数方程式論におけるモデリングと複素解析」 1582 18-22 2008/04

  5. On the uniqueness of nodal radial solutions of superlinear elliptic equations in a ball

    Satoshi Tanaka

    RIMS Kokyuroku 1547 120-124 2007/04

    Publisher: Kyoto University

    ISSN: 1880-2818

  6. Existence of solutions with prescribed numbers of zeros of boundary value problems for ordinary differential equations with the one-dimensional p-Laplacian

    Satoshi Tanaka

    RIMS Kokyuroku 1474 162-168 2006/02

    Publisher: Kyoto University

    ISSN: 1880-2818

  7. On the uniqueness of nodal radial solutions of sublinear elliptic equations in a ball (Functional Equations and Complex Systems)

    Tanaka Satoshi

    RIMS Kokyuroku 1445 12-18 2005/07

    Publisher: Kyoto University

    ISSN: 1880-2818

  8. Existence of solutions of two point boundary value problems with concave and convex nonlinearities

    Satoshi Tanaka

    RIMS Kokyuroku 1254 190-192 2002/04

    Publisher: Kyoto University

    ISSN: 1880-2818

  9. Oscillatory solutions of neutral differential equations

    Satoshi Tanaka

    RIMS Kokyuroku 1216 274-281 2001/06

    Publisher: Kyoto University

    ISSN: 1880-2818

  10. Existence of oscillatory solutions of neutral differential equations

    Satoshi Tanaka

    RIMS Kokyuroku 1128 82-90 2000/01

    Publisher: Kyoto University

    ISSN: 1880-2818

  11. Comparison Theorems for Neutral Differential Equations

    Satoshi Tanaka

    RIMS Kokyuroku 1083 219-230 1999/02

    Publisher: Kyoto University

    ISSN: 1880-2818

  12. 中立型微分方程式のある終局的正値解が存在するための必要十分条件

    田中 敏

    数理解析研究所講究録「非線形の数理と関数方程式」 1034 185-198 1998/04

    Publisher: 京都大学

    ISSN: 1880-2818

Show all ︎Show first 5

Presentations 160

  1. Energy estimates for least energy solutions of the generalized Henon equation

    鈴木啓太, 田中敏

    日本数学会 2025 年度年会 2025/03/18

  2. 球面上における Emden 方程式の正値解の一意性と非一意性

    永井陸, 田中敏

    日本数学会 2025 年度年会 2025/03/18

  3. 球面上の scalar field 方程式の正値全域解の多重存在性

    森田大河, 田中敏

    日本数学会 2025 年度年会 2025/03/18

  4. Existence and multiplicity of positive radial solutions to the supercritical Brezis-Nirenberg problem in an annulus Invited

    Satoshi Tanaka

    Geometric Aspects of Partial Differential Equations 2024/12/08

  5. 計算機援用による scalar field 方程式の符号変化球対称解の一意性証明

    田中一成, 柏木雅英, 内藤雄基, 田中敏, 渡辺宏太郎

    日本数学会 2024 年度秋季総合分科会 2024/09/06

  6. The best constant for the Sobolev-Poincare inequality, II. Monotonicity

    2024/09/04

  7. The best constant for the Sobolev-Poincare inequality, I. Asymptotic behavior

    2024/09/04

  8. Existence of positive solutions to an eigenvalue problem with a variable

    2024/09/04

  9. Box-counting dimension of spiral orbits for two-dimensional nonautonomous

    2024/09/03

  10. Uniqueness and nonuniqueness of positive radial solutions to the Brezis- Nirenberg problem in an annulus Invited

    Satoshi Tanaka

    The 42th Kyushu Symposium on Partial Differential Equations 2024/01/22

  11. p-Laplacian の球対称固有値の漸近挙動と単調性

    田中敏

    北見工大における微分方程式セミナー(通算第45回) 2023/09/13

  12. On the multiplicity of positive even solutions to the one-dimensional Henon type equation on some very narrow possible parameter set Invited

    2023/06/01

  13. Uniqueness and multiplicity of positive solutions to the scalar-field equation on large annuli in the three-dimensional unit sphere Invited

    Satoshi Tanaka

    2023/05/31

  14. 三次元単位球面上の円環領域における scalar-field 方程式の正値解の多重存在 Invited

    田中敏

    微分方程式における解の漸近挙動の解析とその周辺 2023/03/09

  15. Uniqueness and multiplicity of positive solutions to the scalar-field equation on large annuli in the three-dimensional unit sphere Invited

    Satoshi Tanaka

    13th Americas Conference on Diff. Equations and Nonlinear Analysis and ICMC Summer Meeting on Differ- ential Equations - 2023 Chapter 2023/02/01

  16. Uniqueness and nonuniqueness of positive radial solutions to the Brezis-Nirenberg problem in an annulus Invited

    Satoshi Tanaka

    The 41th Kyushu Symposium on Partial Differential Equations 2023/01/22

  17. Existence and multiplicity of positive solutions to the scalar-field equation on large annuli in the three-dimensional sphere Invited

    Satoshi Tanaka

    CMM PDE Seminar 2022/10/25

  18. Existence and multiplicity of positive solutions to the scalar-field equation on large annuli in the 3-sphere

    田中敏, 渡辺宏太郎, 塩路直樹

    日本数学会 2022 年 度秋季総合分科会 2022/09/13

  19. 三次元単位球面内の円環領域上の scalar-field 方程式の正値対称解 Invited

    田中敏

    広島数理解析セミナー (第 260 回) 2022/07/22

  20. On the uniqueness of positive radial solutions to superlinear elliptic equations in annuli Invited

    Satoshi Tanaka

    The 23rd Northeastern Symposium on Mathematical Analysis 2022/02/22

  21. 1 次元 Henon 型方程式の正値対称解の多重存在 Invited

    田中敏

    第 5 回 精 度保証付き数値計算の実問題への応用研究集会 (NVR 2021) 2021/11/28

  22. Multiple existence of positive even function solutions for a two point boundary value problem on some very narrow possible parameter set

    2021/09/14

  23. Multiplicity of positive even solutions to the one-dimensional Henon type equation on some very narrow possible parameter set Invited

    Satoshi Tanaka

    Differential Equations Day on ZOOM 2021/08/18

  24. On a perturbation theory for the planar quasilinear differential system and its application

    2021/03/15

  25. 1 次元 Henon 方程式の正値対称解のモース指数と対称性破壊分岐について Invited

    田中敏

    第 4 回 精度保証付き数値計算の実問題への応 用研究集会 (NVR 2020) 2020/11/29

  26. Perturbation of planar quasilinear differential systems and its application Invited

    2020/10/22

  27. Perturbations of quasilinear differential systems Invited

    Satoshi Tanaka

    2019 International Workshop on Nonlinear PDEs and Its Applications 2019/11/02

  28. Perturbations of half-linear differential systems and its application to quasilinear elliptic equations International-presentation

    Satoshi Tanaka

    Equadiff 2019 2019/07/09

  29. 1次元 Henon 方程式の正値対称解のモース指数と対称性破壊分岐 Invited

    田中 敏

    東北大学 応用数理解析セミナー 2019/05/16

  30. Uniqueness of positive radial solutions of superlinear elliptic equations in annuli Invited

    Satoshi Tanaka

    2019/03/26

  31. Symmetry-breaking bifurcation of positive solutions to the Moore-Nehari differential equation

    田中 敏, 梶木屋 龍治, Inbo Sim

    日本数学会2018 年度秋季総合分科会 2018/09/24

  32. Characteristic equation for autonomous planar half-linear differential systems International-presentation Invited

    Satoshi Tanaka

    2018/09/11

  33. Moore-Nehari 方程式の対称性破壊分岐

    田中 敏

    芝浦工業大学における微分方程式セミナー(通算第41 回) 2018/08/25

  34. Symmetry-breaking bifurcation for the Moore-Nehari differential equation International-presentation Invited

    Satoshi Tanaka

    The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications 2018/07/07

  35. Bifurcation of positive solutions for two classes of one-dimensional (p,q)-Laplace equations International-presentation Invited

    Satoshi Tanaka

    NTHU Department of Mathematics Visiting Scholar Colloquium 2018/07/04

  36. Box-counting dimension of discrete spirals and its application to difference equations International-presentation

    Satoshi Tanaka

    ICDEA 2018 2018/05/24

  37. A complete classification of bifurcation diagrams for a class of (p,q)-Laplace equations

    梶木屋 龍治, Inbo Sim, 田中 敏

    日本数学会2018年度年会 2018/03/18

  38. Characteristic equation for autonomous planar half-linear differential systems

    田中 敏, 鬼塚 政一

    日本数学会2018年度年会 2018/03/18

  39. Box dimension of solution curves for a class of two-dimensional linear differential systems

    鬼塚 政一, 田中 敏

    日本数学会2018年度年会 2018/03/18

  40. Existence of a symmetry-breaking bifurcation point for the one-dimensional Liouville type equation Invited

    田中 敏

    第39 回「南大阪応用数学セミナー」 2017/10/28

  41. Morse index and symmetry-breaking bifurcation of positive solutions to the one-dimensional Liouville type equation International-presentation Invited

    Satoshi Tanaka

    2017/10/17

  42. Morse index and symmetry-breaking bifurcation of positive solutions to the one-dimensional Liouville type equation International-presentation Invited

    Satoshi Tanaka

    Nonlinear Analysis, PDEs, and Applications : A Conference in Honor of Yong-Hoon Lee's 60th Birthday 2017/09/23

  43. Symmetry-breaking bifurcation for positive solutions of the one-dimensional Henon equation International-presentation

    Satoshi Tanaka

    Equadiff 2017 2017/07/25

  44. Asymptotic behavior of solutions to autonomous planar half-linear differential systems Invited

    Satoshi Tanaka

    International Conference on Differential & Difference Equations and Applications 2017/06

  45. Symmetry-breaking bifurcation for the one-dimensional Henon equation International-presentation Invited

    Satoshi Tanaka

    2017 International Workshop on Nonlinear PDE and Applications 2017/04

  46. Symmetry-breaking bifurcation for the one-dimensional Henon equation (日本語)

    田中 敏

    2017年度日本数学会年会 2017/03

  47. 一次元 Henon 方程式の対称性破壊分岐

    田中 敏

    微分方程式論ワークショップ岐阜2017 2017/03

  48. Symmetry-breaking bifurcation for the one-dimensional Henon equation Invited

    田中 敏

    九州関数方程式セミナー 2017/01

  49. 2次元半分線形自励系に付随する特性方程式 International-presentation Invited

    田中 敏

    常微分方程式の定性的理論ワークショップ 2016/09

  50. Bifurcation of positive solutions for the one-dimensional (p,q)-Laplace equation International-presentation Invited

    Satoshi Tanaka

    The 11th AIMS International Conference on Dynamical Systems, Differential Equations and Applications 2016/07

  51. Morse index and symmetry-breaking bifurcation for the one-dimensional Liouville type equation

    田中 敏

    日本数学会2016年度年会 2016/03

  52. Attractivity, rectifiability and non-rectifiability of solutions for two-dimensional linear differential systems

    鬼塚政一, 田中 敏

    日本数学会2016年度年会 2016/03

  53. 1次元リウヴィル型方程式の正値解の対称性の破れとモース指数

    田中 敏

    微分方程式論ワークショップ 岐阜 2016 2016/02

  54. Symmetry-breaking for positive solutions of the one-dimensional Liouville type equation International-presentation Invited

    Satoshi Tanaka

    Workshop on Analysis in Kagurazaka 2016 2016/01

  55. A symmetry-breaking bifurcation for a one-dimensional Liouville type equation International-presentation Invited

    Satoshi Tanaka

    3rd Chile-Japan Workshop on Nonlinear PDEs 2015/12

  56. Symmetry-breaking bifurcation of positive solutions to a one-dimensional Liouville type equation International-presentation Invited

    Satoshi Tanaka

    RIMS 研究集会 実領域における常微分方程式の定性的研究 2015/11

  57. 1次元 Liouville 型方程式の正値解の対称性の破れ

    田中 敏

    富山解析セミナー2015 2015/10

  58. Uniqueness of sign-changing radial solutions for the scalar field equation in some ball and annulus

    田中 敏

    日本数学会2015年度秋季総合分科会 2015/09

  59. Symmetry-breaking bifurcation for one-dimensional Liouville type equations with weights International-presentation Invited

    Satoshi Tanaka

    Nonlinear PDE Workshop at Tohoku University 2015/09

  60. Uniqueness of sign-changing radial solutions for scalar field equations in some ball and annulus International-presentation

    Satoshi Tanaka

    Equadiff 2015 2015/07

  61. Uniqueness of sign-changing radial solutions to the scalar field equation in some ball and annulus Invited

    田中 敏

    解析セミナー 2015/06

  62. On the uniqueness of sign-changing radial solutions to the scalar field equation in some ball and annulus International-presentation Invited

    Satoshi Tanaka

    2015 International Workshop on Nonlinear PDE and Applications 2015/06

  63. スカラー場方程式の符号変化する球対称解の一意性について

    田中 敏

    常微分方程式ワークショップ 松山 2015 2015/03

  64. 2点境界値問題の正値解の対称性の破れとモース指数 Invited

    田中 敏

    九州関数方程式セミナー 2014/11

  65. A note on the uniqueness of sign-changing radial solutions for scalar field equations International-presentation Invited

    Satoshi Tanaka

    The 10th AIMS Conference on Dynamical Systems Differential Equations and Applications 2014/07

  66. A note on the uniqueness of sign-changing radial solutions for scalar eld equations in thin annuli Invited

    田中 敏

    なかもず解析セミナー 第20回 2014/06

  67. 1次元 Henon 型方程式の正値解の対称性の破れ

    田中 敏

    振動理論ワークショップ ー 金沢 2014 2014/03

  68. Uniqueness of nodal radial solutions for a Dirichlet problem with an exponent near 1 in some 2-dimensional annulus International-presentation Invited

    Satoshi Tanaka

    2014 International Workshop on Nonlinear PDE and Applications 2014/03

  69. 2点境界値問題の正値解の対称性の破れ Invited

    田中 敏

    松山解析セミナー 2014 2014/02

  70. A note on the symmetry-breaking and Morse index for positive solutions of one-dimensional Henon type equations

    田中 敏

    日本数学会2013年度秋季総合分科会 2013/09

  71. Morse index and symmetry-breaking for positive solutions of one-dimensional Henon type equations International-presentation

    Satoshi Tanaka

    Equadiff 13 2013/08

  72. Morse index and symmetry-breaking for positive solutions of one-dimensional Henon type equations International-presentation

    Satoshi Tanaka

    ICCM 2013 2013/07

  73. Exact multiplicity of positive solutions for a class of two-point boundary value problems with one-dimensional p-Laplacian

    田中 敏

    日本数学会2013年度年会 2013/03

  74. 一次元 p-Lapace 作用素をもつ2点境界値問題の正値解の厳密な個数

    田中 敏

    振動理論ワークショップ ー 松山 2013 2013/02

  75. Morse indices of positive solutions for the one-dimensional Henon equation and its application to the number of positive solutions International-presentation Invited

    Satoshi Tanaka

    International Workshop on Stationary Problems in Nonlinear Partial Differential Equations 2013/01

  76. Symmetry-breaking and Morse index for positive solutions of the Henon equation

    田中 敏

    富山解析セミナー2012 2012/10

  77. 優線形2点境界値問題の正値解の非一意性 ―正値偶関数解の対称性の破れ― Invited

    田中 敏

    日本数学会2012年度秋季総合分科会 2012/09

  78. On the nonuniqueness of positive solutions for a class of superlinear problems International-presentation Invited

    Satoshi Tanaka

    The 9th AIMS Conference on Dynamical Systems, Differential Equations and Applications 2012/07

  79. 2階線形常微分方程式の振動解のフラクタル次元

    田中 敏

    微分方程式の定性的理論ワークショップ 2012/03

  80. Recti able and fractal oscillations of second-order linear differential equations International-presentation Invited

    Satoshi Tanaka

    Recti able and fractal oscillations of second-order linear differential equations 2012/02

  81. Exact multiplicity of positive solutions for a class of two-point boundary value problems with one-dimensional p-Laplacian International-presentation Invited

    Satoshi Tanaka

    2012 International Workshop on Nonlinear PDE and Applications 2012/02

  82. 2階線形常微分方程式の振動解のフラクタル次元

    田中 敏

    振動理論ワークショップ ー 尾道 2012 2012/02

  83. Nonuniqueness of positive solutions of two-point boundary value problems for superlinear equations International-presentation

    Satoshi Tanaka

    Equadiff 2011 2011/08

  84. Rectifiable oscillations of self-adjoint and damped linear differential equations of second-order International-presentation Invited

    Satoshi Tanaka

    International Workshop on Geometric and fractal analysis of PDEs and differential 2011/07

  85. On the nonuniqueness of positive solutions of two-point boundary value problems for superlinear equations International-presentation

    Satoshi Tanaka

    2011 International Workshop on Nonlinear PDE and Applications 2011/06

  86. 2階自己随伴型線形微分方程式の振動解の長さによる分類

    田中 敏

    振動理論ワークショップ ー 徳島 2011 2011/02

  87. Emden-Fowler 型微分方程式の2点境界値問題の正値解について

    田中 敏

    微分方程式の定性的理論ワークショップin 岡山理大 2011/01

  88. On the nonuniqueness of positive solutions of boundary value problems for superlinear Emden-Fowler equations International-presentation Invited

    Satoshi Tanaka

    RIMS 研究集会 新しい視点からの現象解析と関数方程式 2010/11

  89. 2階自己随伴型線形微分方程式の有限長振動と無限長振動について

    田中 敏

    富山解析セミナー2010 2010/10

  90. Uniqueness of positive radial solutions of superlinear elliptic equations in a ball International-presentation Invited

    Satoshi Tanaka

    The 8th AIMS International Conference on Dynamic Systems and Differential Equations 2010/05

  91. Emden-Fowler 型微分方程式の2点境界値問題の正値解の一意性について

    田中 敏

    日本数学会2010年度年会 2010/03

  92. Uniqueness and nonuniqueness of positive solutions for two-point boundary value problems of Emden-Fowler equations International-presentation Invited

    Satoshi Tanaka

    Japan-Korea Joint Workshop on Dynamical Systems and Related Topics 2010/03

  93. Emden-Fowler 型常微分方程式の2点境界値問題の正値解の非一意性について

    田中 敏

    振動理論ワークショップ - 倉敷 2010 2010

  94. On the uniqueness of positive solutions of two-point BVPs of Emden-Fowler equations International-presentation Invited

    Satoshi Tanaka

    Second Chile-Japan Workshop on Nonlinear Elliptic and Parabolic PDE 2009/12

  95. New sufficient conditions for the uniqueness of positive solutions of boundary value problems of Emden-Fowler equations International-presentation Invited

    Satoshi Tanaka

    Interenational Workshop on Qualitative Theory of ODEs in Hiroshima 2009 2009/11

  96. Emden-Fowler 型常微分方程式の2点境界値問題の正値解の一意性について

    田中 敏

    広島大学における微分方程式セミナー (微分方程式セミナー通算第32回) 2009/09

  97. On the uniqueness of positive solutions for two-point boundary value problems of Emden-Fowler differential equations International-presentation

    Satoshi Tanaka

    Equadiff 12 2009/07

  98. Uniqueness of positive solutions for two-point boundary value problems of Emden-Fowler differential equations International-presentation Invited

    Satoshi Tanaka

    International Workshop on Nonlinear PDE and Applications 2009/06

  99. Emden-Fowler 型常微分方程式の2点境界値問題の正値解

    田中 敏

    微分方程式の定性的理論ワークショップ 2009/03

  100. On the nonuniqueness of nodal radial solutions of sublinear elliptic equations in a ball

    田中 敏

    日本数学会2009年度年会 2009/03

  101. Emden-Fowler 型常微分方程式の2点境界値問題の正値解の個数について

    田中 敏

    振動理論ワークショップ - 松山 2009 2009/02

  102. Uniqueness and nonuniqueness of nodal radial solutions of sublinear elliptic equations in a ball International-presentation Invited

    Satoshi Tanaka

    非線形偏微分方程式における定常問題 2008/12

  103. On the uniqueness and nonuniqueness of nodal radial solutions of sublinear ellipticequations in a ball

    田中 敏

    RIMS 研究集会 関数方程式のダイナミクスと数理モデル 2008/11

  104. On the nonuniqueness of nodal radial solutions of sublinear elliptic equations in a ball

    田中 敏

    富山解析セミナー2008 2008/10

  105. Nonuniqueness of nodal radial solutions of sublinear elliptic equations in a ball

    田中 敏

    札幌医科大学における微分方程式セミナー(通算第31回) 2008/09

  106. An identity for BVPs with the one-dimensional p-Laplacian and its applications to the uniqueness of solutions International-presentation Invited

    Satoshi Tanaka

    Intensive Lecture Program and International Conference on Nonlinear PDE and Applications 2008/06

  107. On the uniqueness of nodal radial solutions of sublinear elliptic equations in a ball International-presentation Invited

    Satoshi Tanaka

    The 7th AIMS International Conference on Dyn. Systems, Diff. Equations and Applications 2008/05

  108. 一階非線形遅れ型微分方程式の終局的に正の解について

    田中 敏

    微分方程式の定性的理論ワークショップ 2008/03

  109. 一階非線形遅れ型方程式の終局的に正の解の存在と非存在

    田中 敏

    振動理論ワークショップ - 福岡 2008 2008/02

  110. An identity for a quasilinear ordinary differential equation and its applications

    田中 敏

    関数方程式論におけるモデリングと複素解析 (RIMS 研究集会) 2007/11

  111. 準線形常微分方程式に関するある恒等式とその応用

    田中 敏

    富山解析セミナー2007 2007/09

  112. 準線形常微分方程式に関するある恒等式とその境界値問題への応用

    田中 敏

    上越教育大学における微分方程式セミナー (通算第30回) 2007/08

  113. An identity for ordinary differential equations with the one-dimensional p-Laplacian and its applications to boundary value problems International-presentation

    Satoshi Tanaka

    Equadiff 07 2007/08

  114. 準線形常微分方程式に関するある恒等式

    田中 敏

    振動理論ワークショップ - 岡山 2007 2007/02

  115. On the uniqueness of nodal radial solutions of superlinear elliptic equations in a ball

    田中 敏

    現象からの関数方程式 (RIMS 研究集会) 2006/11

  116. On radial oscillatory solutions of a superlinear elliptic equation

    田中 敏

    島根大学における微分方程式セミナー (通算第29回) 2006/09

  117. Radial oscillatory solutions of a superlinear elliptic equation

    田中 敏

    日本数学会 2006年度秋季総合分科会 2006/09

  118. 2点境界値問題の指定された個数の零点をもつ解の一意性とその楕円型方程式の球対称解への応用 Invited

    田中 敏

    微分方程式の総合的研究 2005/12

  119. On the uniqueness of nodal radial solutions of sublinear elliptic equations in a ball

    田中 敏

    関数方程式の解のダイナミクスと数値シミュレーション(京都大学数理解析研究所共同研究事業) 2005/08

  120. Multiplicity of solutions of the boundary value problem for a class of ordinary differential equations with the one-dimensional p-Laplacian

    田中 敏

    広島大学における微分方程式セミナー(通算第28回) 2005/08

  121. 円環領域における楕円型方程式の境界値問題の解の個数

    田中 敏

    関数微分方程式牛窓セミナー2005 2005/08

  122. On the existence of solutions with prescribed numbers of zeros of two-point boundary value problems for the one-dimensional p-Laplacian International-presentation

    Satoshi Tanaka

    Conference on Differential & Difference Equations and Applications 2005/08

  123. Existence of solutions with prescribed numbers of zeros of two-point boundary value problems for the one-dimensional p-Laplacian International-presentation

    Satoshi Tanaka

    EQUADIFF 11 2005/07

  124. Uniqueness of nodal radial solutions of sublinear elliptic equations in a bal

    田中 敏

    日本数学会 2005 年度年会 2005/03

  125. On the uniqueness of nodal radial solutions of sublinear elliptic equations in a ball

    田中 敏

    関数方程式と複雑系(京都大学数理解析研究所共同研究事業) 2005/03

  126. ある非線形常微分方程式の2点境界値問題の解の一意性について

    田中 敏

    愛媛大学における微分方程式セミナー (通算第 27 回) 2004/09

  127. On the uniqueness of solutions with prescribed numbers of zeros for two-point boundary value problems

    田中 敏

    日本数学会 2004 年度秋季総合分科会 2004/09

  128. Uniqueness of solutions with prescribed numbers of zeros for two-point boundary value problems

    田中 敏

    数理モデルと関数方程式の解のダイナミクス(京都大学数理解析研究所共同研究事業) 2003/11

  129. 非線型微分方程式の境界値問題の解の多重性について

    田中 敏

    神戸大学における微分方程式セミナー (通算第 26 回) 2003/09

  130. Multiple solutions of the boundary value problem for nonlinear second order differential equations International-presentation

    Satoshi Tanaka

    Toyama Conference on Differential Equations - 2003 2003/08

  131. 2階非線形常微分方程式に対する2点境界値問題の解の存在

    田中 敏

    日本数学会 2003年度年会 2003/03

  132. Existence of multiple solutions of the boundary value problem for nonlinear second order differential equations

    田中 敏

    振動理論ワークショップ - 富山 2003 2003/01

  133. On the existence of solutions of the boundary value problem for nonlinear second order differential equations

    田中 敏

    関数方程式と数理モデル(京都大学数理解析研究所共同研究事業) 2002/11

  134. 2階非線形常微分方程式に対する2点境界値問題の解の存在について

    田中 敏

    崇城大学における微分方程式セミナー (通算第 25 回) 2002/08

  135. Existence of solutions of two point boundary value problems with concave and convex nonlinearities

    田中 敏

    関数方程式の解のダイナミクスとその周辺 (京都大学数理解析研究所共同研究事業) 2001/11

  136. Existence of solutions of two point boundary value problem for second order differential equations with concave and convex nonlinearities

    田中 敏

    広島大学における微分方程式セミナー (通算第 24 回) 2001/09

  137. Oscillation of even order neutral differential equations

    田中 敏

    関数方程式の定性的理論とその現象解析への応用 (京都大学数理解析研究所共同研究事業) 2000/11

  138. Oscillation of solutions of even order neutral differential equations

    田中 敏

    福岡大学微分方程式セミナー 2000/10

  139. 偶数階中立型関数微分方程式の振動定理

    田中 敏

    日本数学会 2000 年度秋季総合分科会 2000/09

  140. An oscillation theorem for a class of even order neutral differential equations

    田中 敏

    愛媛大学における微分方程式セミナー (通算第 23 回) 2000/08

  141. 中立型関数微分方程式の解の存在と漸近挙動 Invited

    田中 敏

    第27回 広島数理解析セミナー (2000年) 2000/02

  142. 中立型微分方程式の振動解の存在

    田中 敏

    日本数学会中国・四国支部例会 2000/01

  143. A necessary and sufficient condition for the oscillation of a class of even order neutral differential equations International-presentation

    田中 敏

    福岡大学微分方程式セミナー 1999/12

  144. Existence of oscillatory solutions of neutral differential equations

    田中 敏

    数理モデルと関数方程式(京都大学数理解析研究所共同研究事業) 1999/11

  145. A comparison theorem for a certain neutral differential equation

    田中 敏

    日本数学会 1998 年度秋季総合分科会 1999/09

  146. 偶数階中立型微分方程式の振動性

    田中 敏

    富山大学における微分方程式セミナー (通算第 22 回) 1999/08

  147. A comparison theorem for a class of even order neutral differential equations

    田中 敏

    微分方程式八海山セミナー99 1999/07

  148. 中立型微分方程式に対する比較定理

    田中 敏

    関数方程式の方法とその応用(京都大学数理解析研究所共同研究事業) 1998/11

  149. Existence theorems for neutral differential equations

    田中 敏

    日本数学会 1998 年度秋季総合分科会 1998/09

  150. 中立型微分方程式の解の存在と漸近挙動

    田中 敏

    徳島大学における微分方程式セミナー(通算第 21 回) 1998/08

  151. Positive solutions of higher order nonlinear neutral differential equations

    田中 敏

    微分方程式湖畔セミナー98 in Matsue 1998/07

  152. 周期的な係数もつ一階中立型関数微分方程式の正値解

    田中 敏

    日本数学会 1998 年度年会 1998/03

  153. Existence of positive solutions of nonlinear functional differential equations of neutral type

    田中 敏

    非線型微分方程式の定性的理論 1998/01

  154. 中立型微分方程式のある終局的正値解が存在するための必要十分条件

    田中 敏

    非線形の数理と関数方程式(京都大学数理解析研究所共同研究事業) 1997/11

  155. 中立型関数微分方程式の振動解の存在について

    田中 敏

    微分方程式関数微分方程式白州セミナー97 1997/09

  156. 高階中立型関数微分方程式の終局的正値解の存在性

    田中 敏

    日本数学会 1997 年度秋季総合分科会 1997/09

  157. 高階中立型関数微分方程式の終局的正値解の存在

    田中 敏

    愛媛大学における微分方程式セミナー (通算第 20 回) 1997/08

  158. 中立型関数微分方程式の解の振動性について

    田中 敏

    日本数学会 1997 年度年会 1997/04

  159. 一階中立型関数微分方程式の解の振動性

    田中 敏

    日本数学会中国・四国支部例会 1997/01

  160. 二階非線形中立型関数微分方程式の解の振動性について

    田中 敏

    愛媛大学における微分方程式セミナー (通算第 18 回) 1995/08

Show all Show first 5

Research Projects 13

  1. Nonlinear Elliptic Equations and Its Applications

    2022/04 - 2024/03

  2. 2点境界値問題の解の厳密な個数と分岐現象

    田中 敏

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 基盤研究(C)

    Category: 基盤研究(C)

    Institution: 岡山理科大学

    2019/04/01 - 2022/03/31

  3. Analysis of singular nonlinear structure in dissipative systems

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (A)

    Category: Grant-in-Aid for Scientific Research (A)

    Institution: Tokyo Institute of Technology

    2017/04/01 - 2022/03/31

  4. International Workshop on Nonlinear Elliptic Equations and Its Applications

    2020/04 - 2022/03

  5. The number of solutions and the length and the fractal dimension of oscillatory solutions of two point boundary problems Competitive

    Tanaka Satoshi, Onitsuka Masakazu, Naito Yuki, Kajikiya Ryuji, Tanaka Mieko, Kanemitsu Takanao, Shioji Naoki, Watanabe Kohtaro, Pasic Mervan, Sim Inbo, Wu Fentao, Wang Shin-Hwa, Hung Kuo-Chih, Manasevich Raul, Garcia-Huidobro Marta

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)

    Category: Grant-in-Aid for Scientific Research (C)

    Institution: Okayama University of Science

    2014/04/01 - 2019/03/31

    More details Close

    The number of solutions and the length and the fractal dimension of oscillatory solutions of two point boundary problems are studied, and then the following results were established. Sufficient conditions for the existence of three positive solutions to two point boundary problem with a sign-changing weight function and the one-dimensional p-Lalpacian were obtained. Results on the number of solutions to the autonomous two point boundary problem with (p,q)-Lalpacian were obtained. The symmetry-breaking bifurcations for the one-dimensional Liouville type equation and the one-dimensional Henon equation were found. Results on the non-rectifiability and the box-counting dimension of solution curves of two-dimensional non-autonomous linear and half-linear differential systems were obtained.

  6. The number of nonoscillatory solutions and the length and the fractal dimension for two-point boundary value problems

    TANAKA Satoshi

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (B)

    Category: Grant-in-Aid for Young Scientists (B)

    Institution: Okayama University of Science

    2011 - 2013

    More details Close

    In this study, two-point boundary value problems for nonlinear ordinary differential equations were considered. The positive solution is a kind of nonoscillatory solutions. The symmetry-breaking for positive solutions was proved by finding the Morse index of positive solutions. Then the existence of positive symmetry solutions and positive asymmetry solutions was shown, and therefore, a result of the nonuniqueness of positive solutions was established. A sufficient condition is obtained for the existence of exact two positive solutions of problems with one dimensional p-Laplacian. The fractal dimension of radial oscillatory solutions for a class of elliptic partial differential equations was found.

  7. Study of the solution semigroup for integral equations and related topics

    MURAKAMI Satoru, HAMAYA Yoshihiro, NAGABUCHI Yutaka, KAMIYA Shigeyasu, TANAKA Satoshi

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)

    Category: Grant-in-Aid for Scientific Research (C)

    Institution: Okayama University of Science

    2010 - 2012

    More details Close

    We studied some qualitative properties of solutions in integral equations. Indeed, for linear integral equations we analyzed some spectral properties for the generator of the associated solution semigroup, and obtained an estimate on the essential spectral radius of the generator. Furthermore, we established a representation formula in the phase space for solutions of nonhomogeneous linear equations. Applying these results, we obtained Massera type results on the existence of bounded solutions, periodic solutions and so on. Also, for nonlinear integral equations we established the principle of linearization which is effectively applicable to stability problems in nonlinear equations.

  8. A study on the number of sign-changing solutions of two-point boundary value problems and its application

    TANAKA Satoshi

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (B)

    Category: Grant-in-Aid for Young Scientists (B)

    Institution: Okayama University of Science

    2008 - 2010

    More details Close

    In this study, two-point boundary value problems for nonlinear ordinary differential equations are considered. New results for the uniqueness of sign-changing solutions are established. As its application we have obtained sufficient conditions for the uniqueness of sign-changing radial solutions of boundary value problems of elliptic partial differential equations in a ball. Moreover the nonuniqueness examples for sign-changing radial solutions are also given. It is expected that we can obtain exact multiplicity results for sign-changing solutions of two-point boundary value problems by applying the method used here.

  9. Study of stability properties for positive linear equations with delay and related topics

    MURAKAMI Satoru, KAMIYA Shigeyasu, HAMAYA Yoshihiro, NAGABUCHI Yutaka, TANAKA Satoshi, SHIMENO Nobukazu

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)

    Category: Grant-in-Aid for Scientific Research (C)

    Institution: Okayama University of Science

    2007 - 2009

    More details Close

    We studied qualitative properties of solutions in functional differential equations, integrodifferential equations and Volterra difference equations which are typical ones of equations with delay. Applying the variation-of-constants formula in the phase space for functional differential equations, we obtained a result on the behavior of solutions for equations with a perturbation. Also, we established a result on the existence of several invariant manifolds for nonlinear functional differential equations. Furthermore, treating integrodifferential equations mainly, we investigated the positivity of equations, and obtained a criterion on stabilities for positive equations.

  10. Oscillation theory and singular boundary value problems for higher-order ordinary differential equations

    NAITO Manabu, SUGIE Jitsuro, USAMI Hiroyuki, TANAKA Satoshi

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)

    Category: Grant-in-Aid for Scientific Research (C)

    Institution: Ehime University

    2007 - 2008

  11. Self-similar structure and singularity of solutions for nonlinear parabolic partial differential equations

    NAITO Yuki, ISHI Katsuyuki, KUWAMURA Masataka, SUZUKI Takashi, SATO Tokushi, TANAKA Satoshi

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)

    Category: Grant-in-Aid for Scientific Research (C)

    Institution: Kobe University

    2005 - 2007

    More details Close

    Structure of self-similar solutions for nonlinear parabolic partial differential equations and the role of self-similar solutions for the asymptotic behavior of time-global solutions and the finite time blow up solutions are studied. In particular, we consider the structure of self-similar solutions for semilinear heat equations, the role of self-similar solutions in the blow-up phenomena for nonlinear heat equations, and the structure of self-similar solutions for chemotaxis system. We show the multiple existence of positive self-similar solutions for semilinear heat equations with sub-critical and critical nonlinearity by employing variationa methods for semilinear elliptic partial differential equations. In the super-critical case, we show the existence and some properties of positive self-similar solutions by using of the ordinary differential methods. We show some criterion for blow up rate of solutions of semilinear heat equations with critical Sobolev nonlinearity. In particular we verify that a solution must blow up in the self-similar rate, which is called type-I blow up rate, if the solution is positive on the backward parbolic space-time region. In addition, we show, in the case where space dimension is 3, there exist solutions which blow up in specific blow-up rate, called type II blow up rate, when the domain shrinks with suitable rate. We show that time-global solutions for parabolic chemotaxis system asymptotic to forward self-similar solutions as time gtends to the infinity in the case where space dimensional is 2. We also show the non-existence of backward self-similar solutions for chemotaxis system in the 2-dimensional case. We consider the representation of positive solutions for semilinear elliptic equations with singular forcing terms, and then, we show the existence of positive minimal solution and the second positive solutions.

  12. Formal adjoint equation for equations with time delay and its applications

    MURAKAMI Satoru, KAMIYA Shigeyasu, HAMAYA Yoshihiro, SHIMENO Nobukazu, NAGABUCHI Yutaka, TANAKA Satoshi

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)

    Category: Grant-in-Aid for Scientific Research (C)

    Institution: Okayama University of Science

    2004 - 2006

    More details Close

    Head investigator and five investigators studied qualitative properties of solutions of functional differential equations, integrodifferential equations and Volterra difference equations which are typical ones of equations with delay, and obtained many results on the subject as cited below. 1. For linear integrodifferential equations with integrable kernels, we characterized uniform asymptotic stability property of the zero solution in terms of the distribution of spectrum of the characteristic operator as wellas the integrability of the resolvent. As an application of the result, for equations with almost periodic perturbation we obtained a sufficient condition for the existence of almost periodic solutions, and analyzed the spectrum of the almost periodic solutions. Furthermore, applying the method to Volterra difference equations, we obtained some result on the stability property of the solution of partial differential equations with piecewise continuous delay. 2. Using a variation-of-constants formula in the phase space for linear equations with delay, we established the existence of invariant manifolds (such as local stable manifold, local center manifold and so on) for some nonlinear equations, and applied the result to the stability problem. Also, through some finer considerations, we investigated the smoothness of the invariant manifolds. 3. For linear functional difference equations with perturbations, we investigated the asymptotic behavior of solutions by decomposing the phase space into the direct sum of the stable subspace and the unstable manifold by means of the spectrum analysis of the solution operator, and obtained an extension of the Perron theorem for ordinary differential equations.

  13. 漸近挙動による中立型微分方程式の正値解の分類とその構造に関する研究

    田中 敏

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 若手研究(B)

    Category: 若手研究(B)

    2002 - 2004

    More details Close

    本研究に関係することが期待されている、ある種の境界値問題の解の一意性についてこれまでの研究でわかったことを「愛媛大学における微分方程式セミナー」や「日本数学会2004年度秋季総合分科会」で講演発表した。また、今年度は内藤助教授(神戸大学)との共著論文「On the existence of multiple solutions of the boundary value problem for nonlinear second order differential」が学術雑誌「Nonlinear Analysis」に発表された。さらに、2つの論文が掲載受理された。1つは、雑誌「Annales Polonici Mathematici」に受理された吉田教授(富山大学)との共著「Forced Oscillation of Certain Hyperbolic Equations with Continuous Distributed Deviating Arguments」である。この論文ではある双曲型の偏微分方程式の問題を常微分中立型微分不等式に帰着することにより、双曲型の問題のすべての解が振動である十分条件を得た。もう1つは「Mathematics Journal of Toyama University」に受理された「Oscillation criteria for a class of second order forced neutral differential equations」である。この論文ではある2階の中立型微分方程式のすべての解が振動であるための十分条件を得ている。その結果は過去のいくつかの結果の拡張になっている。中立型微分方程式には様々な正値解が存在することが過去の結果により知られているが、それらの結果を拡張し、さらに、統一的にまとめることができることができた。それらの結果をまとめた論文が現在投稿中である。

Show all Show first 5

Social Activities 47

  1. RIMS 共同研究(グループ型A)「非線形問題における新展開を目指した解析」

    2025/03/03 - 2025/03/05

  2. 第 26 回北東数学解析研究会

    2025/02/17 - 2025/02/18

  3. 大阪電気通信大学における微分方程式セミナー

    2024/09/12 - 2024/09/13

  4. RIMS共同研究(グループ型A)「非線形問題における精密解析」

    2024/03/04 - 2024/03/06

  5. 2024 Japan-Korea Workshop on Nonlinear PDEs and Its Applications

    2024/01/16 - 2024/01/17

  6. Recent Development of Qualitative Theory on ODEs and its Applications

    2023/10/25 - 2023/10/27

  7. 2023 Korea-Japan Workshop on Nonlinear PDEs and Its Applications

    2023/09/06 - 2023/09/09

  8. The 13th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Special Session 28: Qualitative theory of nonlinear elliptic and parabolic equations

    2023/05/31 - 2023/06/01

  9. New developments of nonlinear problems with precision analyses

    2023/03/06 - 2023/03/08

  10. 大阪公立大学における微分方程式セミナー(通算第44回)

    2022/09/06 - 2022/09/07

  11. Accurate analysis of nonlinear problems

    2022/03/07 - 2022/03/08

  12. International Workshop on Nonlinear Elliptic Equations and Its Applications

    2022/01/26 - 2022/01/27

  13. Theory on ODEs and its Applications

    2021/11/10 - 2021/11/12

  14. オンラインによる微分方程式セミナー

    2021/08/30 - 2021/08/31

  15. RIMS 共同研究(グループ型)「非線形問題への常微分方程式 の手法によるアプローチ」副代表者

    2021/03/04 - 2021/03/05

  16. The 22nd Northeastern Symposium on Mathematical Analysis

    2021/02/15 - 2021/02/16

  17. 「半田山微分方程式セミナー」世話人

    2012/12/06 - 2020/03/31

  18. 第六回 ODE 若手セミナー

    2019/12/06 - 2019/12/07

  19. 愛媛大学における微分方程式セミナー (通算第 42 回)

    2019/08/23 - 2019/08/24

  20. RIMS 共同研究(グループ型)「常微分方程式の手法による非線形問題の探究研究集会」副代表者

    2019/03/07 - 2019/03/09

  21. 「International Workshop on Nonlinear PDEs 2018 in Okayama - In honor of Professor Ryuji Kajikiya on his sixtieth birthday - 」Organizing Comitee

    2018/12/13 - 2018/12/15

  22. 研究集会「第五回 ODE 若手セミナー」世話人

    岐阜大学 サテライトキャンパス

    2018/12/05 - 2018/12/06

  23. RIMS 研究集会「常微分方程式の定性的理論および数理モデル研究への応用」副代表者

    京都大学数理解析研究所

    2018/11/12 - 2018/11/14

  24. 「The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications: Special Session SS101 Structure of solutions for nonlinear elliptic equations 」organizer

    台湾 台湾大学

    2018/07/06 - 2018/07/07

  25. RIMS研究集会「非線形問題への常微分方程式の手法によるアプローチ」副代表者

    京都大学数理解析研究所

    2018/03/05 - 2018/03/07

  26. 研究集会「第四回 ODE 若手セミナー」世話人

    大阪府立大学 I-site なんば

    2017/12/06 - 2017/12/07

  27. RIMS 研究集会「実領域における常微分方程式研究の継承と革新」副代表者

    京都大学数理解析研究所

    2017/11/06 - 2017/11/08

  28. 「Equadiff 2017 – Invited minisymposia: Qualitative theory of nonlinear elliptic equations」organizer

    スロバキア スロバキア工科大学

    2017/07/24 - 2017/07/28

  29. 研究集会「微分方程式論ワークショップ岐阜2017」世話人

    岐阜大学 サテライトキャンパス

    2017/03/08 - 2017/03/09

  30. 研究集会「第三回ODE 若手セミナー」世話人

    岡山理科大学

    2016/12/14 - 2016/12/15

  31. 「International Workshop on Nonlinear PDEs 2016 in Osaka」Organizer

    大阪府立大学 I-site なんば

    2016/12/07 - 2016/12/09

  32. 「Japan-China Joint Workshop on Dynamical Systems in Okayama 2016」Organizing Committee

    岡山理科大学

    2016/12/02 - 2016/12/02

  33. RIMS 研究集会「常微分方程式の定性的理論とその周辺」副代表者

    京都大学数理解析研究所

    2016/11/16 - 2016/11/18

  34. 研究集会「微分方程式論ワークショップ 岐阜 2016」世話人

    岐阜大学 サテライトキャンパス

    2016/02/23 - 2016/02/24

  35. 研究集会「第二回ODE 若手セミナー」世話人

    岡山理科大学

    2015/12/03 - 2015/12/04

  36. 研究集会「常微分方程式ワークショップ 松山 2015」世話人

    愛媛大学

    2015/03/10 - 2015/03/10

  37. 研究集会「ODE 若手セミナー2015」世話人

    岡山理科大学

    2015/02/24 - 2015/02/24

  38. 「International Workshop on Nonlinear Partial Differential Equations」主催者

    岡山国際交流センター

    2014/12/10 - 2014/12/12

  39. 研究集会「振動理論ワークショップ-金沢2014~吉田範夫先生定年退職記念研究集会~」世話人

    2014/03/09 - 2014/03/10

  40. RIMS 研究集会「常微分方程式の定性的理論の新展開」副代表者

    京都大学数理解析研究所

    2013/11/18 - 2013/11/20

  41. 研究集会「岡山理科大学における微分方程式セミナー(通算第36回)」世話人

    岡山理科大学

    2013/09/09 - 2013/09/10

  42. 研究集会「関数方程式の定性的理論ワークショップ」世話人

    岡山理科大学

    2013/03/18 - 2013/03/19

  43. RIMS 研究集会「常微分方程式の大域的定性理論とその応用」研究代表者

    京都大学数理解析研究所

    2012/11/07 - 2012/11/09

  44. 「International Workshop Handayama Differential Equation Seminar」主催者

    岡山理科大学

    2012/11/06 - 2012/11/06

  45. 研究集会「微分方程式の定性的理論ワークショップin 岡山理大」世話人

    岡山理科大学

    2011/01/22 - 2011/01/23

  46. 研究集会「振動理論ワークショップ - 倉敷 2010」世話人

    岡山理科大学国際交流センター

    2010/02/10 - 2010/02/11

  47. 研究集会「振動理論ワークショップ - 岡山 2007」主催者

    岡山理科大学

    2007/02/10 - 2007/02/11

Show all Show first 5