Details of the Researcher

PHOTO

Masaru Tsujii
Section
Graduate School of Engineering
Job title
Assistant Professor
Degree
  • 博士(農学)(東京農工大学)

  • 修士(農学)(東京農工大学)

e-Rad No.
30865887

Research History 3

  • 2020/06 - Present
    東北大学大学院 工学研究科 助教

  • 2016/06 - 2020/05
    Tohoku University

  • 2016/04 - 2016/05
    東京農工大学大学院 連合農学研究科 博士特別研究生

Education 3

  • 東京農工大学大学院 連合農学研究科 応用生命科学専攻

    2013/04 - 2016/03

  • 東京農工大学大学院 応用生命化学専攻

    2011/04 - 2013/03

  • 東京農工大学 農学部 応用生物科学科

    2007/04 - 2011/03

Committee Memberships 5

  • 日本農芸化学会 日本農芸化学会SNS連絡担当要員

    2024/04 - Present

  • 日本農芸化学会 東北支部 会員・広報

    2023/04 - Present

  • 日本農芸化学会 産学官学術交流委員会幹事

    2023/04 - Present

  • 日本農芸化学会 ダイバーシティ推進委員会委員

    2023/03 - Present

  • 日本農芸化学会 東北支部選挙管理委員会

    2023/12 - 2024/05

Professional Memberships 7

  • 日本生化学会

  • 日本分子生物学会

  • 藍藻の分子生物学

  • 日本植物生理学会

  • 光合成学会

  • 生物工学会

  • JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY

︎Show all ︎Show first 5

Research Interests 8

  • 植物

  • 微生物

  • 酵母

  • 大腸菌

  • 光合成

  • イオン輸送体

  • ラン藻

  • 麹菌

Research Areas 2

  • Life sciences / Molecular biology /

  • Life sciences / Molecular biology /

Awards 2

  1. 日本農芸化学会 東北支部 奨励賞

    2024/09 日本農芸化学会

  2. 第69回日本生物工学会大会 大会トピックス選考

    2017/09 日本生物工学会

Papers 18

  1. Structure reveals a regulation mechanism of plant outward-rectifying K+ channel GORK by structural rearrangements in the CNBD-Ankyrin bridge. International-journal

    Taro Yamanashi, Yuki Muraoka, Tadaomi Furuta, Tsukasa Kume, Natsuko Sekido, Shunya Saito, Shota Terashima, Takeshi Yokoyama, Yoshikazu Tanaka, Atsushi Miyamoto, Kanane Sato, Tomoyuki Ito, Hikaru Nakazawa, Mitsuo Umetsu, Ellen Tanudjaja, Masaru Tsujii, Ingo Dreyer, Julian I Schroeder, Yasuhiro Ishimaru, Nobuyuki Uozumi

    Proceedings of the National Academy of Sciences of the United States of America 122 (30) e2500070122 2025/07/29

    DOI: 10.1073/pnas.2500070122  

    More details Close

    Guard cells, which regulate stomatal apertures in plants, possess a sophisticated mechanism for regulating turgor pressure. The outward-rectifying "K+out" channel GORK, expressed in guard cells of the plant Arabidopsis thaliana, is a central component that promotes stomatal closure by releasing K+ to the extracellular space, thereby lowering turgor pressure. To date, the structural basis underlying the regulation of the K+ transport activity of GORK is unclear. Using cryo-EM, we determined the structures of the GORK outward-rectifying K+ channel with a resolution of 3.16 to 3.27 Å in five distinct conformations that differ significantly in their C-terminal cyclic nucleotide binding domain (CNBD) and ankyrin repeat (ANK) domain. The C-linker connects the transmembrane domains to the C-terminal domains, i.e., CNBD, CNBD-Ankyrin bridge, and ANK. The structural changes and interactions in the C-linker determine whether the closed state of GORK is closer to the preopen state or in a more removed state from the open state of the channel. In particular, interconversion in the short sequence within the CNBD-Ankyrin bridge plays a decisive role in this determination. This region forms an α-helix in the preopened state, while it adopts a nonhelical structure in further distant closed states. The dynamics of the cytosolic region strongly suggest that the K+ channel activity of GORK is regulated by cytosolic signaling factors during stomatal closure.

  2. Functional characterization of an additional transmembrane domain unique to TrkG and TrkH in Escherichia coli

    Ellen Tanudjaja, Haoyu Zhang, Tadaomi Furuta, Masaru Tsujii, Yasuhiro Ishimaru, Nobuyuki Uozumi

    Bioscience, Biotechnology, and Biochemistry 2025/07/15

    DOI: 10.1093/bbb/zbaf101  

  3. Na+-driven pH regulation by Na+/H+ antiporters promotes photosynthetic efficiency in cyanobacteria

    Masaru Tsujii, Ayumu Kobayashi, Ayaka Kano, Kota Kera, Tomoko Takagi, Noriko Nagata, Seiji Kojima, Kouki Hikosaka, Riichi Oguchi, Kintake Sonoike, Chihiro Azai, Tomomi Inagaki, Yasuhiro Ishimaru, Nobuyuki Uozumi

    Plant Physiology 197 (1) 2024/10/24

    Publisher: Oxford University Press (OUP)

    DOI: 10.1093/plphys/kiae562  

    ISSN: 0032-0889

    eISSN: 1532-2548

    More details Close

    Abstract Photosynthetic organisms have developed mechanisms to regulate light reactions in response to varying light conditions. Photosynthetic electron transport leads to the formation of a ΔpH across the thylakoid membrane, which is crucial for regulating electron transport. However, other pH modulators remain to be identified, particularly in cyanobacteria. In this study, we evaluated the potential involvement of six Na+/H+ antiporters (NhaS1–NhaS6) in control of pH in the cyanobacterium Synechocystis sp. PCC 6803. Synechocystis showed a strong requirement for Na+ at high light intensities, with ΔnhaS1 and ΔnhaS2 strains unable to grow under high light conditions. We analyzed Na+ efflux–driven H+-uptake activities of NhaS1–NhaS6 in inverted membranes of Escherichia coli. Biological fractionation and immunoelectron microscopy revealed that NhaS1 localizes to both the plasma and thylakoid membranes while NhaS2 localizes to the plasma membrane. Measurement of photosynthesis activity indicated that NhaS2 promotes ATP production and electron transport from PQ to P700. Measurements of pH outside of the cells and in the cytoplasm suggested that both NhaS1 and NhaS2 are involved in plasma membrane–mediated light-dependent H+ uptake and cytoplasmic acidification. NhaS1 and NhaS2 were also found to prevent photoinhibition under high light treatment. These results indicate that H+ transport mediated by NhaS1 and NhaS2 plays a role in regulating intracellular pH and maintaining photosynthetic electron transport.

  4. Dissecting structure and function of the monovalent cation/H + antiporters Mdm38 and Ylh47 in Saccharomyces cerevisiae Peer-reviewed

    Masaru Tsujii, Ellen Tanudjaja, Haoyu Zhang, Haruto Shimizukawa, Ayumi Konishi, Tadaomi Furuta, Yasuhiro Ishimaru, Nobuyuki Uozumi

    Journal of Bacteriology 2024/07/31

    Publisher: American Society for Microbiology

    DOI: 10.1128/jb.00182-24  

    ISSN: 0021-9193

    eISSN: 1098-5530

    More details Close

    ABSTRACT Saccharomyces cerevisiae Mdm38 and Ylh47 are homologs of the Ca 2+ /H + antiporter Letm1, a candidate gene for seizures associated with Wolf-Hirschhorn syndrome in humans. Mdm38 is important for K + /H + exchange across the inner mitochondrial membrane and contributes to membrane potential formation and mitochondrial protein translation. Ylh47 also localizes to the inner mitochondrial membrane. However, knowledge of the structures and detailed transport activities of Mdm38 and Ylh47 is limited. In this study, we conducted characterization of the ion transport activities and related structural properties of Mdm38 and Ylh47. Growth tests using Na + /H + antiporter-deficient Escherichia coli strain TO114 showed that Mdm38 and Ylh47 had Na + efflux activity. Measurement of transport activity across E. coli -inverted membranes showed that Mdm38 and Ylh47 had K + /H + , Na + /H + , and Li + /H + antiport activity, but unlike Letm1, they lacked Ca 2+ /H + antiport activity. Deletion of the ribosome-binding domain resulted in decreased Na + efflux activity in Mdm38. Structural models of Mdm38 and Ylh47 identified a highly conserved glutamic acid in the pore-forming membrane-spanning region. Replacement of this glutamic acid with alanine, a non-polar amino acid, significantly impaired the ability of Mdm38 and Ylh47 to complement the salt sensitivity of E. coli TO114. These findings not only provide important insights into the structure and function of the Letm1-Mdm38-Ylh47 antiporter family but by revealing their distinctive properties also shed light on the physiological roles of these transporters in yeast and animals. IMPORTANCE The inner membrane of mitochondria contains numerous ion transporters, including those facilitating H + transport by the electron transport chain and ATP synthase to maintain membrane potential. Letm1 in the inner membrane of mitochondria in animals functions as a Ca 2+ /H + antiporter. However, this study reveals that homologous antiporters in mitochondria of yeast, Mdm38 and Ylh47, do not transport Ca 2+ but instead are selective for K + and Na + . Additionally, the identification of conserved amino acids crucial for antiporter activity further expanded our understanding of the structure and function of the Letm1-Mdm38-Ylh47 antiporter family.

  5. Instantaneous extracellular solution exchange for concurrent evaluation of membrane permeability of single cells Peer-reviewed

    Shingo Kaneko, Sugiura Hirotaka, Masaru Tsujii, Hisataka Maruyama, Nobuyuki Uozumi, Fumihito Arai

    Lab on a Chip 2023/12

    Publisher: Royal Society of Chemistry (RSC)

    DOI: 10.1039/d3lc00633f  

    ISSN: 1473-0197

    eISSN: 1473-0189

    More details Close

    The rapid osmotic stress is imposed on the microorganisms by the exchange of a locally formed droplet containing cells.

  6. Integration of Microfluidic Chip and Probe with a Dual Pump System for Measurement of Single Cells Transient Response Peer-reviewed

    Xu Du, Shingo Kaneko, Hisataka Maruyama, Hirotaka Sugiura, Masaru Tsujii, Nobuyuki Uozumi, Fumihito Arai

    Micromachines 14 (6) 1210-1210 2023/06/07

    Publisher: MDPI AG

    DOI: 10.3390/mi14061210  

    eISSN: 2072-666X

    More details Close

    The integration of liquid exchange and microfluidic chips plays a critical role in the biomedical and biophysical fields as it enables the control of the extracellular environment and allows for the simultaneous stimulation and detection of single cells. In this study, we present a novel approach for measuring the transient response of single cells using a system integrated with a microfluidic chip and a probe with a dual pump. The system was composed of a probe with a dual pump system, a microfluidic chip, optical tweezers, an external manipulator, an external piezo actuator, etc. Particularly, we incorporated the probe with the dual pump to allow for high-speed liquid change, and the localized flow control enabled a low disturbance contact force detection of single cells on the chip. Using this system, we measured the transient response of the cell swelling against the osmotic shock with a very fine time resolution. To demonstrate the concept, we first designed the double-barreled pipette, which was assembled with two piezo pumps to achieve a probe with the dual pump system, allowing for simultaneous liquid injection and suction. The microfluidic chip with on-chip probes was fabricated, and the integrated force sensor was calibrated. Second, we characterized the performance of the probe with the dual pump system, and the effect of the analysis position and area of the liquid exchange time was investigated. In addition, we optimized the applied injection voltage to achieve a complete concentration change, and the average liquid exchange time was achieved at approximately 3.33 ms. Finally, we demonstrated that the force sensor was only subjected to minor disturbances during the liquid exchange. This system was utilized to measure the deformation and the reactive force of Synechocystis sp. strain PCC 6803 in osmotic shock, with an average response time of approximately 16.33 ms. This system reveals the transient response of compressed single cells under millisecond osmotic shock which has the potential to characterize the accurate physiological function of ion channels.

  7. The HKT1 Na+ transporter protects plant fertility by decreasing Na+ content in stamen filaments. International-journal Peer-reviewed

    Takeshi Uchiyama, Shunya Saito, Taro Yamanashi, Megumi Kato, Kosuke Takebayashi, Shin Hamamoto, Masaru Tsujii, Tomoko Takagi, Noriko Nagata, Hayato Ikeda, Hidetoshi Kikunaga, Toshimi Suda, Sho Toyama, Misako Miwa, Shigeo Matsuyama, Mitsunori Seo, Tomoaki Horie, Takashi Kuromori, Mutsumi Yamagami, Yasuhiro Ishimaru, Nobuyuki Uozumi

    Science advances 9 (22) eadg5495 2023/06/02

    DOI: 10.1126/sciadv.adg5495  

    More details Close

    Salinity stress can greatly reduce seed production because plants are especially sensitive to salt during their reproductive stage. Here, we show that the sodium ion transporter AtHKT1;1 is specifically expressed around the phloem and xylem of the stamen in Arabidopsis thaliana to prevent a marked decrease in seed production caused by salt stress. The stamens of AtHKT1;1 mutant under salt stress overaccumulate Na+, limiting their elongation and resulting in male sterility. Specifically restricting AtHKT1;1 expression to the phloem leads to a 1.5-fold increase in the seed yield upon sodium ion stress. Expanding phloem expression of AtHKT1;1 throughout the entire plant is a promising strategy for increasing plant productivity under salinity stress.

  8. Two cyanobacterial response regulators with diguanylate cyclase activity, Rre2 and Rre8, participate in biofilm formation Peer-reviewed

    Ayumu Kobayashi, Masamune Nakamura, Masaru Tsujii, Kohei Makino, Tatsuya Nagayama, Kensuke Nakamura, Kei Nanatani, Kera Kota, Yuki Furuuchi, Shunsuke Kayamori, Tadaomi Furuta, Iwane Suzuki, Yoshihiro Hayakawa, Tanudjaja Ellen, Yasuhiro Ishimaru, Nobuyuki Uozumi

    Molecular Microbiology 119 (5) 599-611 2023/03/16

    Publisher: Wiley

    DOI: 10.1111/mmi.15057  

    ISSN: 0950-382X

    eISSN: 1365-2958

  9. Dynamic Deformation Measurement of an Intact Single Cell via Microfluidic Chip with Integrated Liquid Exchange Peer-reviewed

    Xu Du, Di Chang, Shingo Kaneko, Hisataka Maruyama, Hirotaka Sugiura, Masaru Tsujii, Nobuyuki Uozumi, Fumihito Arai

    Engineering 2023/02

    Publisher: Elsevier BV

    DOI: 10.1016/j.eng.2022.08.020  

    ISSN: 2095-8099

  10. 植物Na・K輸送体の解析

    魚住 信之, 内山 剛志, 山梨 太郎, 辻井 雅, 石丸 泰寛, 池田 隼人, 菊永 英寿

    アイソトープ・放射線研究発表会 3 17 2023

    Publisher: 公益社団法人 日本アイソトープ協会

    DOI: 10.50955/happyokai.3.0_17  

    eISSN: 2436-4487

  11. Two Trk/Ktr/HKT-type potassium transporters, TrkG and TrkH perform distinct functions in Escherichia coli K-12 International-journal Peer-reviewed

    Ellen Tanudjaja, Naomi Hoshi, Kaneyoshi Yamamoto, Kunio Ihara, Tadaomi Furuta, Masaru Tsujii, Yasuhiro Ishimaru, Nobuyuki Uozumi

    Journal of Biological Chemistry 299 (2) 102846-102846 2022/12

    Publisher: Elsevier BV

    DOI: 10.1016/j.jbc.2022.102846  

    ISSN: 0021-9258

    More details Close

    Escherichia coli K-12 possesses two versions of Trk/Ktr/HKT-type potassium ion (K+) transporters, TrkG and TrkH. The current paradigm is that TrkG and TrkH have largely identical characteristics, and little information is available regarding their functional differences. Here, we show using cation uptake experiments with K+ transporter knockout mutants that TrkG and TrkH have distinct ion transport activities and physiological roles. K+-transport by TrkG required Na+, whereas TrkH-mediated K+ uptake was not affected by Na+. An aspartic acid located five residues away from a critical glycine in the third pore-forming region might be involved in regulation of Na+-dependent activation of TrkG. In addition, we found that TrkG but not TrkH had Na+ uptake activity. Our analysis of K+ transport mutants revealed that TrkH supported cell growth more than TrkG; however, TrkG was able to complement loss of TrkH-mediated K+ uptake in E. coli. Furthermore, we determined that transcription of trkG in E. coli was downregulated but not completely silenced by the xenogeneic silencing factor H-NS (histone-like nucleoid structuring protein or heat-stable nucleoid-structuring protein). Taken together, the transport function of TrkG is clearly distinct from that of TrkH, and TrkG seems to have been accepted by E. coli during evolution as a K+ uptake system that coexists with TrkH.

  12. 植物における硫黄代謝と光合成制御

    雅 辻井, 泰寛 石丸, 信之 魚住

    生化学 93 (5) 643-650 2021/10/25

    DOI: 10.14952/SEIKAGAKU.2021.930643  

    ISSN: 0037-1017

  13. Hik36–Hik43 and Rre6 act as a two-component regulatory system to control cell aggregation in Synechocystis sp. PCC6803 Peer-reviewed

    Kota Kera, Yuichiro Yoshizawa, Takehiro Shigehara, Tatsuya Nagayama, Masaru Tsujii, Saeko Tochigi, Nobuyuki Uozumi

    Scientific Reports 10 (1) 19405 2020/12

    Publisher: Springer Science and Business Media LLC

    DOI: 10.1038/s41598-020-76264-2  

    eISSN: 2045-2322

    More details Close

    <title>Abstract</title> In response to environmental stress the model cyanobacterium, <italic>Synechocystis</italic> sp. PCC6803 can switch from a planktonic state to autoaggregation and biofilm formation. The precise mechanism of this transition remains unknown. Here we investigated the role of a candidate two-component regulatory system (TCS) in controlling morphological changes, as a way to understand the intermediate molecular steps that are part of the signaling pathway. A bacterial two-hybrid assay showed that the response regulator Rre6 formed a TCS together with a split histidine kinase consisting of Hik36 and Hik43. Individual disruption mutants displayed autoaggregation in a static culture. In contrast, unlike in the wild type, high salinity did not induce biofilm formation in <italic>Δhik36</italic>, <italic>Δhik43</italic> and <italic>Δrre6</italic>. The expression levels of exopolysaccharide (EPS) production genes were higher in <italic>Δhik36</italic> and <italic>Δhik43</italic>, compared with the wild type, but lower in <italic>Δrre6</italic>, suggesting that the TCS regulated EPS production in <italic>Synechocystis</italic>. Rre6 interacted physically with the motor protein PilT2, that is a component of the type IV pilus system. This interaction was enhanced in a phosphomimic version of Rre6. Taken together, Hik36–Hik43–Rre6 function as an upstream component of the pili-related signal transduction cascade and control the prevention of cell adhesion and biofilm formation.

  14. 葉緑体の光合成活性に関わるイオン輸送体の最近の知見と動向

    雅 辻井, 信之 魚住

    生化学 92 (5) 748-752 2020/10/25

    DOI: 10.14952/SEIKAGAKU.2020.920748  

    ISSN: 0037-1017

  15. Diverse Physiological Functions of Cation Proton Antiporters across Bacteria and Plant Cells International-journal Peer-reviewed

    Masaru Tsujii, Ellen Tanudjaja, Nobuyuki Uozumi

    International Journal of Molecular Sciences 21 (12) 4566-4566 2020/06/26

    Publisher: {MDPI} {AG}

    DOI: 10.3390/ijms21124566  

    More details Close

    Membrane intrinsic transport systems play an important role in maintaining ion and pH homeostasis and forming the proton motive force in the cytoplasm and cell organelles. In most organisms, cation/proton antiporters (CPAs) mediate the exchange of K+, Na+ and Ca2+ for H+ across the membrane in response to a variety of environmental stimuli. The tertiary structure of the ion selective filter and the regulatory domains of Escherichia coli CPAs have been determined and a molecular mechanism of cation exchange has been proposed. Due to symbiogenesis, CPAs localized in mitochondria and chloroplasts of eukaryotic cells resemble prokaryotic CPAs. CPAs primarily contribute to keeping cytoplasmic Na+ concentrations low and controlling pH, which promotes the detoxification of electrophiles and formation of proton motive force across the membrane. CPAs in cyanobacteria and chloroplasts are regulators of photosynthesis and are essential for adaptation to high light or osmotic stress. CPAs in organellar membranes and in the plasma membrane also participate in various intracellular signal transduction pathways. This review discusses recent advances in our understanding of the role of CPAs in cyanobacteria and plant cells.

  16. DAY-LENGTH-DEPENDENT DELAYED-GREENING1, the Arabidopsis Homolog of the Cyanobacterial H+-Extrusion Protein, Is Essential for Chloroplast pH Regulation and Optimization of Non-Photochemical Quenching. Peer-reviewed

    Kyohei Harada, Takatoshi Arizono, Ryoichi Sato, Mai Duy Luu Trinh, Akira Hashimoto, Masaru Kono, Masaru Tsujii, Nobuyuki Uozumi, Shinichi Takaichi, Shinji Masuda

    Plant & cell physiology 60 (12) 2660-2671 2019/12/01

    DOI: 10.1093/pcp/pcz203  

    ISSN: 0032-0781

    More details Close

    Plants convert solar energy into chemical energy through photosynthesis, which supports almost all life activities on earth. Because the intensity and quality of sunlight can change dramatically throughout the day, various regulatory mechanisms help plants adjust their photosynthetic output accordingly, including the regulation of light energy accumulation to prevent the generation of damaging reactive oxygen species. Non-photochemical quenching (NPQ) is a regulatory mechanism that dissipates excess light energy, but how it is regulated is not fully elucidated. In this study, we report a new NPQ-regulatory protein named Day-Length-dependent Delayed-Greening1 (DLDG1). The Arabidopsis DLDG1 associates with the chloroplast envelope membrane, and the dldg1 mutant had a large NPQ value compared with wild type. The mutant also had a pale-green phenotype in developing leaves but only under continuous light; this phenotype was not observed when dldg1 was cultured in the dark for ≥8 h/d. DLDG1 is a homolog of the plasma membrane-localizing cyanobacterial proton-extrusion-protein A that is required for light-induced H+ extrusion and also shows similarity in its amino-acid sequence to that of Ycf10 encoded in the plastid genome. Arabidopsis DLDG1 enhances the growth-retardation phenotype of the Escherichia coli K+/H+ antiporter mutant, and the everted membrane vesicles of the E. coli expressing DLDG1 show the K+/H+ antiport activity. Our findings suggest that DLDG1 functionally interacts with Ycf10 to control H+ homeostasis in chloroplasts, which is important for the light-acclimation response, by optimizing the extent of NPQ.

  17. Evidence for potassium transport activity of Arabidopsis KEA1-KEA6. International-journal Peer-reviewed

    Masaru Tsujii, Kota Kera, Shin Hamamoto, Takashi Kuromori, Toshiharu Shikanai, Nobuyuki Uozumi

    Scientific reports 9 (1) 10040-10040 2019/07/11

    DOI: 10.1038/s41598-019-46463-7  

    More details Close

    Arabidopsis thaliana contains the putative K+ efflux transporters KEA1-KEA6, similar to KefB and KefC of Escherichia coli. KEA1-KEA3 are involved in the regulation of photosynthetic electron transport and chloroplast development. KEA4-KEA6 mediate pH regulation of the endomembrane network during salinity stress. However, the ion transport activities of KEA1-KEA6 have not been directly characterized. In this study, we used an E. coli expression system to examine KEA activity. KEA1-KEA3 and KEA5 showed bi-directional K+ transport activity, whereas KEA4 and KEA6 functioned as a K+ uptake system. The thylakoid membrane-localized Na+/H+ antiporter NhaS3 from the model cyanobacterium Synechocystis is the closest homolog of KEA3. Changing the putative Na+/H+ selective site of KEA3 (Gln-Asp) to that of NhaS3 (Asp-Asp) did not alter the ion selectivity without loss of K+ transport activity. The first residue in the conserved motif was not a determinant for K+ or Na+ selectivity. Deletion of the possible nucleotide-binding KTN domain from KEA3 lowered K+ transport activity, indicating that the KTN domain was important for this function. The KEA3-G422R mutation discovered in the Arabidopsis dpgr mutant increased K+ transport activity, consistent with the mutant phenotype. These results indicate that Arabidopsis KEA1-KEA6 act as K+ transport systems, and support the interpretation that KEA3 promotes dissipation of ΔpH in the thylakoid membrane.

  18. A long natural-antisense RNA is accumulated in the conidia of Aspergillus oryzae Peer-reviewed

    Masaru Tsujii, Satoshi Okuda, Kazutomo Ishi, Kana Madokoro, Michio Takeuchi, Youhei Yamagata

    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY 80 (2) 386-398 2016/02

    DOI: 10.1080/09168451.2015.1101333  

    ISSN: 0916-8451

    eISSN: 1347-6947

Show all ︎Show first 5

Presentations 34

  1. 大腸菌Trk型K取込みトランスポーターの進化的背景

    Ellen Tanudjaja, 星直美, 山本兼由, 井原邦夫, 古田忠臣, 辻井雅, 石丸泰寛, 魚住信之

    日本農芸化学会2024年度大会 2024/03

  2. シロイヌナズナK+チャネル阻害剤を用いた気孔運動メカニズムの解明

    佐藤奏音, 齋藤俊也, 遠藤晃輔, 鈴木喬太, 島田友輝, 筧太心, 竹田遥, 河野優, 有澤美枝子, 林優紀, 木下俊則, Matteo Grenzi, Alex Costa, 宗正晋太郎, 村田芳行, Khurram Bashir, 関原明, 辻井雅, 石丸泰寛, 魚住信之

    第65回植物生理学会年会 2024/03

  3. 生殖成長期におけるAtHKT1の雄しべ伴細胞におけるNa蓄積の緩和

    内山剛志, 齋藤俊也, 山梨太郎, 加藤恵, 髙木智子, 永田典子, 遠山翔, 三輪美沙子, 松山成夫, 池田隼人, 菊永英寿, 須田利美, 辻井雅, 石丸泰寛, 魚住信之

    第65回植物生理学会年会 2024/03

  4. Na+ が支える藍藻の光合成電子伝達系

    辻井雅, 小林歩夢, 狩野文香, 解良康太, 児島征司, 彦坂幸毅, 小口理一, 園池公毅, 浅井智広, 稲垣知実, 石丸泰寛, 魚住信之

    日本農芸化学会2024年度大会 2024/03

  5. 藍藻のバイオフィルム形成に関与する二成分制御系の同定

    小林歩夢, 中村正宗, 辻井雅, 牧野恒平, 永山達也, 中村謙介, 七谷圭, 解良康太, 古内有希, 茅森俊介, 古田忠臣, 鈴木石根, 早川芳弘, Tanudjaja Ellen, 石丸泰寛, 魚住信之

    第75回日本生物工学会大会 2023/09

  6. 大腸菌KトランスポーターのNa活性化部位の同定

    Ellen Tanudjaja, 星直美, 山本兼由, 井原邦夫, 古田忠臣, 辻井雅, 石丸泰寛, 魚住信之

    第75回 日本生物工学会大会 2023/09

  7. 大腸菌のK取込み輸送体の機能と役割の解析

    魚住信之, Tanudjaja Ellen, 星直美, 辻井雅, 石丸泰寛, 山本兼由, 井原邦夫, 古田忠臣

    第19回大腸菌研究会 2023/06

  8. 二成分制御系による藍藻のバイオフィルム形成制御

    清水川晴人, 中村正宗, 辻井雅, 小林歩夢, 牧野恒平, 永山達也, 中村謙介, 七谷圭, 解良康太, 古内有希, 茅森俊介, 古田忠臣, 鈴木石根, 早川芳弘, Tanudjaja Ellen, 石丸泰寛, 魚住信之

    藍藻の分子生物学2022 2022/12

  9. Na+/H+ アンチポーターによる光合成明反応の最適化

    辻井雅, 小林歩夢, 狩野文香, 解良康太, 児島征司, 小口理一, 彦坂幸毅, 園池公毅, 石丸泰寛, 魚住信之

    藍藻の分子生物学2022 2022/12

  10. Coordinated regulation of photosynthesis by Na+/H+ antiporters in cyanobacteria

    International symposium on photosynthesis and chloroplast regulation 2022/11

  11. 光合成に関与する超硫黄分子

    石丸泰寛, 小林歩夢, 金澤理貴, 辻井雅, 魚住信之

    第95回日本生化学会大会 2022/11

  12. 藍藻 Na+/H+ アンチポーターによるチラコイド膜内 pH 制御

    吉田実央, 辻井雅, 石丸泰寛, 魚住信之

    藍藻の分子生物学2022 2022/04

  13. 強光適応と光合成調節にかかわる藍藻 Na+/H+ アンチポーターの解析

    小林歩夢, 辻井雅, 狩野文香, 解良康太, 石丸泰寛, 魚住信之

    第15回トランスポーター研究会年会 2020/10/12

  14. ER 局在性陽イオン輸送体 Spo75 の欠損は酸化還元状態の乱れを引き起こす

    上原千央, 柴田あすか, 浜本晋, 辻井雅, 石丸泰寛, 笠原紳, 魚住信之

    酵母遺伝学フォーラム 第53回研究報告会 2020/09/07

  15. 光合成活性調節に関与する藍藻 Na+/H+ アンチポーターの解析

    辻井雅, 狩野文香, 小林歩夢, 解良康太, 児島征児, 小口理一, 彦坂公毅, 園池公毅, 魚住信之

    日本農芸化学会2020年度大会 2020/03/27

  16. Activity of novel membrane proteins involved in maintenance of chloroplast H+ homeostasis

    2020/03

  17. Elucidation of the mechanism of Na+ and Cs+-induced cell growth through cation transporters

    18th International Workshop on Plant Membrane Biology 2019/07/07

  18. 駆動力形成を担うイオン輸送による光合成調節

    魚住信之, 辻井雅, 狩野文香, 解良康太, 浜本晋

    第70回日本生物工学会大会 2018/09/05

  19. シアノバクテリア Synechosystis sp. PCC6803 におけるイオン輸送体の局在性とその生理学的役割の解明

    辻井 雅, 狩野文香, 坂下寛明, 宮原雅和, 解良康太, 児島征児, 上妻馨梨, 小口理一, 彦坂幸毅, 園池公毅, 池内昌彦, 魚住信之

    第9回 日本光合成学会年会 2018/05/26

  20. シアノバクテリアトランスポーターの局在性および機能解析

    狩野文香, 辻井雅, 解良康太, 魚住信之

    第59回日本植物生理学会年会 2018/03/28

  21. ショ糖密度勾配遠心分離法によるNa+/H+アンチポーターの細胞内局在性の解析

    狩野文香, 解良康太, 辻井雅, 魚住信之

    藍藻の分子生物学 2017/12/01

  22. 黄麹菌 Aspergillus oryzae において分生子特異的に転写が起こる csrA 遺伝子領域の機能 解析

    加藤晴朗, 辻井雅, 前田浩, 山形洋平

    第17回糸状菌分子生物学コンファレンス 2017/11/17

  23. シロイヌナズナの Non photochemical quenching に関与する K+/H+ アンチポーターの輸送活性の評価

    辻井 雅, 解良康太, 浜本晋, 黒森崇, 鹿内利治, 魚住信之

    第69回日本生物工学会 2017/09/14

  24. 大腸菌を宿主細胞としたシロイヌナズナの K+/H+ アンチポーターの機能解析

    辻井雅, 解良康太, 浜本晋, 黒森崇, 鹿内利治, 魚住信之

    第12回トランスポーター研究会 2017/07/08

  25. Aspergillus oryzae csrA 遺伝子の natural antisense RNA は sense RNA と結合し、sense RNA 量と分生子の発芽を制御する

    辻井 雅, 竹内道雄, 山形洋平

    日本農芸化学会 2016 年度大会 2016/03

  26. Aspergillus oryzae csrA 遺伝子の natural antisense RNA は sense RNA と結合し、発芽を制御する

    辻井 雅, 竹内道雄, 山形洋平

    第 15 回糸状菌分子生物学コンファレンス 2015/11/19

  27. 黄麹菌 A. oryzae における分生子特異的に発現する推定 reductase 遺伝子 (cspA) とその natural antisense transcripts の機能解析

    辻井 雅, 奥田聡, 竹内道雄, 山形洋平

    日本農芸化学会 2015 年度大会 2015/03/26

  28. The possibility of regulation system of gene expression by natural antisense transcripts in Aspergillus oryzae International-presentation

    28th Fungal Genetics Conference 2015/03

  29. Aspergillus oryzae における 331-25 sense RNA, 331-25 antisense RNA の機能解析

    辻井雅, 奥田聡, 竹内道雄, 山形洋平

    第 14 回糸状菌分子生物学コンファレンス 2014/11

  30. Aspergillus oryzae における 331-25 sense RNA, 331-25 antisense RNA の機能解析

    辻井 雅, 竹内道雄, 山形洋平

    日本農芸化学会 2014年度大会 2014/03/28

  31. Aspergillus oryzae における 331-25 sense RNA, 331-25 antisense RNA の機能解析

    辻井雅, 森田寛人, 前田浩, 山形洋平, 竹内道雄

    第 13 回糸状菌分子生物学コンファレンス 2013/11

  32. 黄麹菌 Aspergillus oryzae の分生子特異的 NAT の機能解析

    辻井雅, 森田寛人, 前田浩, 山形洋平, 竹内道雄

    日本農芸化学会 2013 年度大会 2013/03

  33. 黄麹菌の分生子特異的遺伝子の機能解析

    辻井雅, 森田寛人, 前田浩, 山形洋平, 竹内道雄

    第 12 回糸状菌分子生物学コンファレンス 2012/11

  34. 黄麹菌 Aspergillus oryzae の分生子特異的遺伝子の機能解析

    辻井雅, 森田寛人, 前田浩, 山形洋平, 竹内道雄

    日本農芸化学会 2012 年度大会 2012/03

Show all Show first 5

Research Projects 3

  1. 植物葉緑体と藍藻のチラコイド膜プロトン輸送体の超硫黄修飾を介した光合成最適化機構

    辻井 雅

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業

    Category: 基盤研究(C)

    Institution: 東北大学

    2024/04 - 2028/03

  2. Study on the molecular mechanism of Ca signaling mediated by plant K channels

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research

    Category: Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))

    Institution: Tohoku University

    2020/10/27 - 2024/03/31

  3. Elucidation of the mechanism of polyamine-induced enhancement of light energy utilization efficiency in plant chloroplasts and cyanobacteria

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research

    Category: Grant-in-Aid for Early-Career Scientists

    Institution: Tohoku University

    2021/04/01 - 2023/03/31

Teaching Experience 2

  1. 化学・バイオ工学実験A

  2. 化学・バイオ工学演習B

Media Coverage 4

  1. 東北大ら,光合成を最適化するイオン輸送体を解明

    オプトロニクス・オンライン https://optronics-media.com/news/20241112/95766/

    2024/11

    Type: Internet

  2. 藍藻の光合成制御、たんぱく質が最適化 東北大などが一端を解明

    日刊工業新聞 https://www.nikkan.co.jp/articles/view/00731231

    2024/11

    Type: Newspaper, magazine

  3. 東北大など、葉緑体の祖先である藍藻が植物は必要としていないナトリウムイオンを利用して光合成を制御することを解明

    日本経済新聞

    2024/11

    Type: Newspaper, magazine

    More details Close

    脱化石燃料、再生可能エネルギーの生産、食糧増産、環境保全は、現代社会における重要な課題です。この解決策の一つとして、太陽光エネルギーをバイオマスに変換する光合成の効率を最適化することが期待されています。光合成生物の藍藻や植物葉緑体は、太陽光エネルギーを活用し、生体膜に水素イオン(H+)の濃度差を作り出すことで、CO2から糖を生成するため、H+濃度の調節機構はきわめて重要です。 東北大学大学院工学研究科バイオ工学専攻の辻井雅助教らは、植物葉緑体の祖先である「藍藻」のNa+/H+の対向輸送体が光合成の制御において重要な役割を果たすことを初めて明らかにしました。藍藻の膜タンパク質であるNhaS1およびNhaS2(注3)と呼ばれるNa+/H+対向輸送体が、特に強い光の下で細胞内H+濃度を調節し、光合成を最適化することが確認されました。このイオン輸送体の機能と役割の発見により、光合成の最適化メカニズムの理解が進み、藍藻を活用したバイオ燃料の生産や、農作物の収量向上といった実用的な応用が期待されます。 この研究は、日本女子大学、大阪公立大学、早稲田大学、中央大学、立命館大学との共同研究により行われました。本研究の成果は、2024年10月24日に米国植物生理学会誌 Plant Physiology にオンラインで掲載されました。

  4. 光合成を最適化するイオン輸送体の解明 - 葉緑体の祖先はナトリウムを利用して光合成を行う -

    東北大学

    2024/11

    Type: Internet

    More details Close

    脱化石燃料、再生可能エネルギーの生産、食糧増産、環境保全は、現代社会における重要な課題です。この解決策の一つとして、太陽光エネルギーをバイオマスに変換する光合成の効率を最適化することが期待されています。光合成生物の藍藻や植物葉緑体は、太陽光エネルギーを活用し、生体膜に水素イオン(H+)の濃度差を作り出すことで、CO2から糖を生成するため、H+濃度の調節機構はきわめて重要です。 東北大学大学院工学研究科バイオ工学専攻の辻井雅助教らは、植物葉緑体の祖先である「藍藻」のNa+/H+の対向輸送体が光合成の制御において重要な役割を果たすことを初めて明らかにしました。藍藻の膜タンパク質であるNhaS1およびNhaS2(注3)と呼ばれるNa+/H+対向輸送体が、特に強い光の下で細胞内H+濃度を調節し、光合成を最適化することが確認されました。このイオン輸送体の機能と役割の発見により、光合成の最適化メカニズムの理解が進み、藍藻を活用したバイオ燃料の生産や、農作物の収量向上といった実用的な応用が期待されます。 この研究は、日本女子大学、大阪公立大学、早稲田大学、中央大学、立命館大学との共同研究により行われました。本研究の成果は、2024年10月24日に米国植物生理学会誌 Plant Physiology にオンラインで掲載されました。