Details of the Researcher

PHOTO

Ko Matsui
Section
Graduate School of Life Sciences
Job title
Professor
Degree
  • 博士(心理学)(東京大学)

  • 修士(心理学)(東京大学)

e-Rad No.
20435530
Profile

大学在籍時は東京大学文学部心理学科(立花政夫研究室)、ポスドク時は電気生理学のメッカと言われるヴォラム研究所(Craig Jahr研究室)、助教は生理学研究所(脳形態解析研究部門;重本隆一研究室)で過ごしてきて、2013年より、東北大学医学系研究科の准教授(新医学領域創生分野)、2017年より、生命科学研究科の教授に着任しました(超回路脳機能分野)。文系・理系問わず、多様な研究経験を経て、心理学や行動学、電気生理学、微細形態学、光遺伝学等、脳をあらゆる方向から調べ上げるための技術と知識を身に着けてきました。脳を構成する神経細胞やグリア細胞の間で、どのように情報の受け渡しが行われているのか、また、ひとつひとつの細胞間の信号伝達過程が、脳全体のシステムとしての特性にどのように波及していくのかを追究していきたいと考えております。

研究室ウェブサイト:
http://www.ims.med.tohoku.ac.jp/matsui/

 

Research History 9

  • 2017/04 - Present
    Tohoku University Graduate School of Life Sciences Super-network Brain Physiology Professor

  • 2013/01 - 2017/03
    Tohoku University Graduate School of Medicine Division of Interdisciplinary Medical Science, Center for Neuroscience Associate Professor

  • 2006/02 - 2012/12
    Division of Cerebral Structure, National Institute for Physiological Sciences Assistant Professor

  • 2007/10 - 2011/03
    Japan Science and Technology Agency PRESTO

  • 2001/04 - 2006/02
    Vollum Institute Postdoctoral fellow

  • 2003/04 - 2004/03
    The Uehara Memorial Foundation Research Fellowship

  • 2001/04 - 2003/03
    Japan Society for the Promotion Science Postdoctoral Fellowship for Research Abroad

  • 1998/04 - 2001/03
    Japan Society for the Promotion Science Research Fellowship for Young Scientists (DC1)

  • 1999/06 - 1999/08
    Marine Biological Laboratory - Neurobiology Course

Show all Show first 5

Education 3

  • The University of Tokyo Graduate School of Humanities and Sociology Department of Psychology

    1996/04 - 2001/03

  • The University of Tokyo Faculty of Letters Department of Psychology

    1994/04 - 1996/03

  • The University of Tokyo Liberal Arts Science Division II

    1992/04 - 1994/03

Professional Memberships 4

  • Optogenetics Research Society Japan

  • PHYSIOLOGICAL SOCIETY OF JAPAN

  • THE JAPAN NEUROSCIENCE SOCIETY

  • Society for Neuroscience

Research Interests 34

  • 扁桃体

  • 海馬

  • 視床下部

  • ストレス

  • 不安

  • 手綱核

  • 脳梗塞

  • てんかん

  • 社会脳

  • 恐怖条件付け学習

  • 伝達物質拡散

  • 水平視機性眼球運動(HOKR)学習

  • バーグマングリア細胞

  • ファイバーフォトメトリー

  • 迷走神経

  • 心身機能連関

  • メタ可塑性

  • アストロサイト

  • パッチクランプ

  • 光遺伝学

  • オプトジェネティクス

  • 包括脳ネットワーク

  • Synaptic transmission

  • Optogenetics

  • Cerebellum

  • Lateral geniculate nucleus

  • Retina

  • Two photo imaging

  • Electrophysiology

  • Synapse

  • Neuron

  • Plasticity

  • Glia

  • Neurotransmitter

Research Areas 15

  • Life sciences / Rehabilitation science /

  • Life sciences / Neuropathology /

  • Life sciences / Cognitive neuroscience /

  • Life sciences / Pharmacology /

  • Life sciences / Nervous system function /

  • Life sciences / Neuroanatomy and physiology /

  • Life sciences / Laboratory animal science /

  • Life sciences / Zoological sciences /

  • Life sciences / Biophysics /

  • Life sciences / Animals: biochemistry, physiology, behavioral science /

  • Life sciences / Clinical pharmacy /

  • Life sciences / Basic brain sciences /

  • Humanities & social sciences / Experimental psychology /

  • Life sciences / Neuroscience - general /

  • Life sciences / Physiology /

Awards 4

  1. 特別研究員等審査会専門委員表彰

    2018/09 日本学術振興会

  2. 優秀発表賞

    2014/10 公益財団法人アステラス病態代謝研究会

  3. The Japan Neuroscience Society Travel Award

    2005/07

  4. Physiological Society of Japan Award

    2000/03

Papers 58

  1. Dynamics of Neuronal and Astrocytic Energy Molecules in Epilepsy Peer-reviewed

    Kota Furukawa, Yoko Ikoma, Yusuke Niino, Yuichi Hiraoka, Kohichi Tanaka, Atsushi Miyawaki, Johannes Hirrlinger, Ko Matsui

    Journal of Neurochemistry 169 (3) e70044 2025/03/20

    Publisher: Wiley

    DOI: 10.1111/jnc.70044  

    ISSN: 0022-3042

    eISSN: 1471-4159

    More details Close

    ABSTRACT The dynamics of energy molecules in the mouse brain during metabolic challenges induced by epileptic seizures were examined. A transgenic mouse line expressing a fluorescence resonance energy transfer (FRET)‐based adenosine triphosphate (ATP) sensor, selectively expressed in the cytosol of neurons, was used. An optical fiber was inserted into the hippocampus, and changes in cytosolic ATP concentration were estimated using the fiber photometry method. To induce epileptic neuronal hyperactivity, a train of electrical stimuli was delivered to a bipolar electrode placed alongside the optical fiber. Although maintaining a steady cytosolic ATP concentration is crucial for cell survival, a single episode of epileptic neuronal hyperactivity drastically reduced neuronal ATP levels. Interestingly, the magnitude of ATP reduction did not increase with the exacerbation of epilepsy, but rather decreased. This suggests that the primary consumption of ATP during epileptic neuronal hyperactivity may not be solely directed toward restoring the Na+ and K+ ionic imbalance caused by action potential bursts. Cytosolic ATP concentration reflects the balance between supply and consumption. To investigate the metabolic flux leading to neuronal ATP production, a new FRET‐based pyruvate sensor was developed and selectively expressed in the cytosol of astrocytes in transgenic mice. Upon epileptic neuronal hyperactivity, an increase in astrocytic pyruvate concentration was observed. Changes in the supply of energy molecules, such as glucose and oxygen, due to blood vessel constriction or dilation, as well as metabolic alterations in astrocyte function, may contribute to cytosolic ATP dynamics in neurons.image

  2. Descending locus coeruleus noradrenergic signaling to spinal astrocyte subset is required for stress-induced pain facilitation Peer-reviewed

    Riku Kawanabe-Kobayashi, Sawako Uchiyama, Kohei Yoshihara, Daiki Kojima, Thomas McHugh, Izuho Hatada, Ko Matsui, Kenji F Tanaka, Makoto Tsuda

    eLife 14 RP104453 2025/03/13

    Publisher: eLife Sciences Publications, Ltd

    DOI: 10.7554/elife.104453.1  

    More details Close

    It is known that stress powerfully alters pain, but its underlying mechanisms remain elusive. Here, we identified a circuit, locus coeruleus descending noradrenergic neurons projecting to the spinal dorsal horn (LC→SDH-NA neurons), that is activated by acute exposure to restraint stress and is required for stress-induced mechanical pain hypersensitivity in mice. Interestingly, the primary target of spinal NA released from descending LC→SDH-NAergic terminals causing the stress-induced pain hypersensitivity was α1A-adrenaline receptors (α1ARs) in Hes5-positive (Hes5+) astrocytes located in the SDH, an astrocyte subset that has an ability to induce pain sensitization. Furthermore, activation of Hes5+ astrocytes reduced activity of SDH-inhibitory neurons (SDH-INs) that have an inhibitory role in pain processing. This astrocytic reduction of IN activity was canceled by an A1-adenosine receptor (A1R)-knockdown in SDH-INs, and the A1R-knockdown suppressed pain hypersensitivity caused by acute restraint stress. Therefore, our findings suggest that LC→SDH-NA neuronal signaling to Hes5+ SDH astrocytes and subsequent astrocytic reduction of SDH-IN activity are essential for pain facilitation caused by stress.

  3. Astrocytic determinant of the fate of long‐term memory Peer-reviewed

    Hiroki Yamao, Ko Matsui

    Glia 73 (2) 309-329 2024/11/04

    Publisher: Wiley

    DOI: 10.1002/glia.24636  

    ISSN: 0894-1491

    eISSN: 1098-1136

    More details Close

    Abstract While some vivid memories are unyielding and unforgettable, others fade with time. Astrocytes are recognized for their role in modulating the brain's environment and have recently been considered integral to the brain's information processing and memory formation. This suggests their potential roles in emotional perception and memory formation. In this study, we delve into the impact of amygdala astrocytes on fear behaviors and memory, employing astrocyte‐specific optogenetic manipulations in mice. Our findings reveal that astrocytic photoactivation with channelrhodopsin‐2 (ChR2) provokes aversive behavioral responses, while archaerhodopsin‐T (ArchT) photoactivation diminishes fear perception. ChR2 photoactivation amplifies fear perception and fear memory encoding but obstructs its consolidation. On the other hand, ArchT photoactivation inhibits memory formation during intense aversive stimuli, possibly due to weakened fear perception. However, it prevents the decay of remote fear memory over three weeks. Crucially, these memory effects were observed when optogenetic manipulations coincided with the aversive experience, indicating a deterministic role of astrocytic states at the exact moment of fear experiences in shaping long‐term memory. This research underscores the significant and multifaceted role of astrocytes in emotional perception, fear memory formation, and modulation, suggesting a sophisticated astrocyte‐neuron communication mechanism underlying basic emotional state transitions of information processing in the brain.

  4. Plastic vasomotion entrainment Peer-reviewed

    Daichi Sasaki, Ken Imai, Yoko Ikoma, Ko Matsui

    eLife 13 RP93721 2024/04/17

    Publisher: eLife Sciences Publications, Ltd

    DOI: 10.7554/elife.93721.3  

    eISSN: 2050-084X

    More details Close

    The presence of global synchronization of vasomotion induced by oscillating visual stimuli was identified in the mouse brain. Endogenous autofluorescence was used and the vessel ‘shadow’ was quantified to evaluate the magnitude of the frequency-locked vasomotion. This method allows vasomotion to be easily quantified in non-transgenic wild-type mice using either the wide-field macro-zoom microscopy or the deep-brain fiber photometry methods. Vertical stripes horizontally oscillating at a low temporal frequency (0.25 Hz) were presented to the awake mouse, and oscillatory vasomotion locked to the temporal frequency of the visual stimulation was induced not only in the primary visual cortex but across a wide surface area of the cortex and the cerebellum. The visually induced vasomotion adapted to a wide range of stimulation parameters. Repeated trials of the visual stimulus presentations resulted in the plastic entrainment of vasomotion. Horizontally oscillating visual stimulus is known to induce horizontal optokinetic response (HOKR). The amplitude of the eye movement is known to increase with repeated training sessions, and the flocculus region of the cerebellum is known to be essential for this learning to occur. Here, we show a strong correlation between the average HOKR performance gain and the vasomotion entrainment magnitude in the cerebellar flocculus. Therefore, the plasticity of vasomotion and neuronal circuits appeared to occur in parallel. Efficient energy delivery by the entrained vasomotion may contribute to meeting the energy demand for increased coordinated neuronal activity and the subsequent neuronal circuit reorganization.

  5. Astrocyte switch to the hyperactive mode Peer-reviewed

    Shun Araki, Ichinosuke Onishi, Yoko Ikoma, Ko Matsui

    Glia 2024/04/09

    Publisher: Wiley

    DOI: 10.1002/glia.24537  

    ISSN: 0894-1491

    eISSN: 1098-1136

    More details Close

    Abstract Increasing pieces of evidence have suggested that astrocyte function has a strong influence on neuronal activity and plasticity, both in physiological and pathophysiological situations. In epilepsy, astrocytes have been shown to respond to epileptic neuronal seizures; however, whether they can act as a trigger for seizures has not been determined. Here, using the copper implantation method, spontaneous neuronal hyperactivity episodes were reliably induced during the week following implantation. With near 24‐h continuous recording for over 1 week of the local field potential with in vivo electrophysiology and astrocyte cytosolic Ca2+ with the fiber photometry method, spontaneous occurrences of seizure episodes were captured. Approximately 1 day after the implantation, isolated aberrant astrocyte Ca2+ events were often observed before they were accompanied by neuronal hyperactivity, suggesting the role of astrocytes in epileptogenesis. Within a single developed episode, astrocyte Ca2+ increase preceded the neuronal hyperactivity by ~20 s, suggesting that actions originating from astrocytes could be the trigger for the occurrence of epileptic seizures. Astrocyte‐specific stimulation by channelrhodopsin‐2 or deep‐brain direct current stimulation was capable of inducing neuronal hyperactivity. Injection of an astrocyte‐specific metabolic inhibitor, fluorocitrate, was able to significantly reduce the magnitude of spontaneously occurring neuronal hyperactivity. These results suggest that astrocytes have a role in triggering individual seizures and the reciprocal astrocyte‐neuron interactions likely amplify and exacerbate seizures. Therefore, future epilepsy treatment could be targeted at astrocytes to achieve epilepsy control.

  6. Anxiety control by astrocytes in the lateral habenula Peer-reviewed

    Wanqin Tan, Yoko Ikoma, Yusuke Takahashi, Ayumu Konno, Hirokazu Hirai, Hajime Hirase, Ko Matsui

    Neuroscience Research 2024/02

    Publisher: Elsevier BV

    DOI: 10.1016/j.neures.2024.01.006  

    ISSN: 0168-0102

  7. Optogenetic stimulation of vagal nerves for enhanced glucose-stimulated insulin secretion and β cell proliferation. International-journal Peer-reviewed

    Yohei Kawana, Junta Imai, Yosuke M Morizawa, Yoko Ikoma, Masato Kohata, Hiroshi Komamura, Toshihiro Sato, Tomohito Izumi, Junpei Yamamoto, Akira Endo, Hiroto Sugawara, Haremaru Kubo, Shinichiro Hosaka, Yuichiro Munakata, Yoichiro Asai, Shinjiro Kodama, Kei Takahashi, Keizo Kaneko, Shojiro Sawada, Tetsuya Yamada, Akira Ito, Kuniyasu Niizuma, Teiji Tominaga, Akihiro Yamanaka, Ko Matsui, Hideki Katagiri

    Nature biomedical engineering 2023/11/09

    DOI: 10.1038/s41551-023-01113-2  

    More details Close

    The enhancement of insulin secretion and of the proliferation of pancreatic β cells are promising therapeutic options for diabetes. Signals from the vagal nerve regulate both processes, yet the effectiveness of stimulating the nerve is unclear, owing to a lack of techniques for doing it so selectively and prolongedly. Here we report two optogenetic methods for vagal-nerve stimulation that led to enhanced glucose-stimulated insulin secretion and to β cell proliferation in mice expressing choline acetyltransferase-channelrhodopsin 2. One method involves subdiaphragmatic implantation of an optical fibre for the photostimulation of cholinergic neurons expressing a blue-light-sensitive opsin. The other method, which suppressed streptozotocin-induced hyperglycaemia in the mice, involves the selective activation of vagal fibres by placing blue-light-emitting lanthanide microparticles in the pancreatic ducts of opsin-expressing mice, followed by near-infrared illumination. The two methods show that signals from the vagal nerve, especially from nerve fibres innervating the pancreas, are sufficient to regulate insulin secretion and β cell proliferation.

  8. Glial tone of aggression Peer-reviewed

    Yuki Asano, Daichi Sasaki, Yoko Ikoma, Ko Matsui

    Neuroscience Research 202 39-51 2023/11

    Publisher: Elsevier BV

    DOI: 10.1016/j.neures.2023.11.008  

    ISSN: 0168-0102

  9. Dual action of serotonin on local excitatory and inhibitory neural circuits regulating the corticotropin‐releasing factor neurons in the paraventricular nucleus of the hypothalamus Peer-reviewed

    Takayuki Sato, Takuma Sugaya, Ashraf Hossain Talukder, Yuki Tsushima, Shotaro Sasaki, Katsuya Uchida, Tatsuya Sato, Yoko Ikoma, Kenji Sakimura, Atsuo Fukuda, Ko Matsui, Keiichi Itoi

    Journal of Neuroendocrinology 35 (12) 2023/10/30

    Publisher: Wiley

    DOI: 10.1111/jne.13351  

    ISSN: 0953-8194

    eISSN: 1365-2826

    More details Close

    Abstract Serotonergic neurons originating from the raphe nuclei have been proposed to regulate corticotropin‐releasing factor (CRF) neurons in the paraventricular nucleus of the hypothalamus (PVH). Since glutamate‐ and γ‐aminobutyric acid (GABA)‐containing neurons, constituting the hypothalamic local circuits, innervate PVH CRF neurons, we examined whether they mediate the actions of serotonin (5‐hydroxytryptamine [5‐HT]) on CRF neurons. Spontaneous excitatory postsynaptic currents (sEPSCs) or spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in PVH CRF neurons, under whole cell patch‐clamp, using the CRF‐modified yellow fluorescent protein (Venus) ΔNeo mouse. Serotonin elicited an increase in the frequency of sEPSCs in 77% of the cells and a decrease in the frequency of sIPSCs in 71% of the cells, tested in normal medium. Neither the amplitude nor decay time of sEPSC and sIPSC was affected, thus the site(s) of action of serotonin may be presynaptic. In the presence of tetrodotoxin (TTX), serotonin had no significant effects on either parameter of sEPSC or sIPSC, indicating that the effects of serotonin are action potential‐dependent, and that the presynaptic interneurons are largely intact within the slice; distant neurons may exist, though, since some 20%–30% of neurons did not respond to serotonin without TTX. We next examined through what receptor subtype(s) serotonin exerts its effects on presynaptic interneurons. DOI (5‐HT2A/2C agonist) mimicked the action of serotonin on the sIPSCs, and the serotonin‐induced decrease in sIPSC frequency was inhibited by a selective 5‐HT2C antagonist RS102221. 8‐OH‐DPAT (5‐HT1A/7 agonist) mimicked the action of serotonin on the sEPSCs, and the serotonin‐induced increase in sEPSC frequency was inhibited by a selective 5‐HT7 antagonist SB269970. Thus, serotonin showed a dual action on PVH CRF neurons, by upregulating glutamatergic‐ and downregulating GABAergic interneurons; the former may partly be mediated by 5‐HT7 receptors, whereas the latter by 5‐HT2C receptors. The CRF‐Venus ΔNeo mouse was useful for the electrophysiological examination.

  10. Glial modulation of the parallel memory formation Peer-reviewed

    Teppei Kanaya, Ryo Ito, Yosuke M. Morizawa, Daichi Sasaki, Hiroki Yamao, Hiroshi Ishikane, Yuichi Hiraoka, Kohichi Tanaka, Ko Matsui

    Glia 71 (10) 2401-2417 2023/06/26

    Publisher: Wiley

    DOI: 10.1002/glia.24431  

    ISSN: 0894-1491

    eISSN: 1098-1136

  11. Properties of REM sleep alterations with epilepsy. International-journal Peer-reviewed

    Yoko Ikoma, Yusuke Takahashi, Daichi Sasaki, Ko Matsui

    Brain : a journal of neurology 146 (6) 2431-2442 2023/03/03

    DOI: 10.1093/brain/awac499  

    More details Close

    It is usually assumed that individuals rest during sleep. However, coordinated neural activity that presumably requires high energy consumption is increased during REM sleep. Here, using freely moving male transgenic mice, the local brain environment and astrocyte activity during REM sleep were examined using the fibre photometry method with an optical fibre inserted deep into the lateral hypothalamus, a region that is linked with controlling sleep and metabolic state of the entire brain. Optical fluctuations of endogenous autofluorescence of the brain parenchyma or fluorescence of sensors for Ca2+ or pH expressed in astrocytes were examined. Using a newly devised method for analysis, changes in cytosolic Ca2+ and pH in astrocytes and changes in the local brain blood volume (BBV) were extracted. On REM sleep, astrocytic Ca2+ decreases, pH decreases (acidification) and BBV increases. Acidification was unexpected, as an increase in BBV would result in efficient carbon dioxide and/or lactate removal, which leads to alkalinization of the local brain environment. Acidification could be a result of increased glutamate transporter activity due to enhanced neuronal activity and/or aerobic metabolism in astrocytes. Notably, optical signal changes preceded the onset of the electrophysiological property signature of REM sleep by ∼20-30 s. This suggests that changes in the local brain environment have strong control over the state of neuronal cell activity. With repeated stimulation of the hippocampus, seizure response gradually develops through kindling. After a fully kindled state was obtained with multiple days of stimuli, the optical properties of REM sleep at the lateral hypothalamus were examined again. Although a negative deflection of the detected optical signal was observed during REM sleep after kindling, the estimated component changed. The decrease in Ca2+ and increase in BBV were minimal, and a large decrease in pH (acidification) emerged. This acidic shift may trigger an additional gliotransmitter release from astrocytes, which could lead to a state of hyperexcitable brain. As the properties of REM sleep change with the development of epilepsy, REM sleep analysis may serve as a biomarker of epileptogenesis severity. REM sleep analysis may also predict whether a specific REM sleep episode triggers post-sleep seizures.

  12. N-Acetylcysteine Suppresses Microglial Inflammation and Induces Mortality Dose-Dependently via Tumor Necrosis Factor-α Signaling Peer-reviewed

    Mai Sakai, Zhiqian Yu, Masayuki Taniguchi, Rosanne Picotin, Nanami Oyama, David Stellwagen, Chiaki Ono, Yoshie Kikuchi, Ko Matsui, Miharu Nakanishi, Hatsumi Yoshii, Tomoyuki Furuyashiki, Takaaki Abe, Hiroaki Tomita

    International Journal of Molecular Sciences 24 (4) 3798-3798 2023/02/14

    Publisher: MDPI AG

    DOI: 10.3390/ijms24043798  

    eISSN: 1422-0067

    More details Close

    N-acetylcysteine (NAC) is an antioxidant that prevents tumor necrosis factor (TNF)-α-induced cell death, but it also acts as a pro-oxidant, promoting reactive oxygen species independent apoptosis. Although there is plausible preclinical evidence for the use of NAC in the treatment of psychiatric disorders, deleterious side effects are still of concern. Microglia, key innate immune cells in the brain, play an important role in inflammation in psychiatric disorders. This study aimed to investigate the beneficial and deleterious effects of NAC on microglia and stress-induced behavior abnormalities in mice, and its association with microglial TNF-α and nitric oxide (NO) production. The microglial cell line MG6 was stimulated by Escherichia coli lipopolysaccharide (LPS) using NAC at varying concentrations for 24 h. NAC inhibited LPS-induced TNF-α and NO synthesis, whereas high concentrations (≥30 mM) caused MG6 mortality. Intraperitoneal injections of NAC did not ameliorate stress-induced behavioral abnormalities in mice, but high-doses induced microglial mortality. Furthermore, NAC-induced mortality was alleviated in microglial TNF-α-deficient mice and human primary M2 microglia. Our findings provide ample evidence for the use of NAC as a modulating agent of inflammation in the brain. The risk of side effects from NAC on TNF-α remains unclear and merits further mechanistic investigations.

  13. Microarray dataset of gene transcription in mouse microglia and peripheral monocytes in contextual fear conditioning International-journal Peer-reviewed

    Zhiqian Yu, Mai Sakai, Hotaka Fukushima, Chiaki Ono, Yoshie Kikuchi, Ryuta Koyama, Ko Matsui, Tomoyuki Furuyashiki, Satoshi Kida, Hiroaki Tomita

    Data in Brief 46 108862-108862 2023/02

    Publisher: Elsevier BV

    DOI: 10.1016/j.dib.2022.108862  

    ISSN: 2352-3409

    More details Close

    The transcription profile of microglia related to fear conditioning remains unclear. Here, we used Illumina MouseWG-6v2 microarrays to investigate the gene transcription changes in microglia and peripheral monocytes after contextual fear conditioning of C57BL/6 J mice. Mice were trained with or without a single minimized footshock stimulation (0-s or 2-s, 0.4 mA) and re-exposed to the training context without footshock for three different durations 24 h later: 0 min (FS0), 3 min (FS3), or 30 min (FS30). Whole brain microglia and peripheral monocytes were prepared 24 h after re-exposure using a neural tissue dissociation kit, including non-footshock controls for two re-exposure durations (Con3 and Con30). The data can be valuable for researchers interested in glial cells and neurotransmission studies and are related to the research article "Contextual fear conditioning regulates synapse-related gene transcription in mouse microglia".

  14. Local brain environment changes associated with epileptogenesis International-journal Peer-reviewed

    Yoko Ikoma, Daichi Sasaki, Ko Matsui

    Brain 146 (2) 576-586 2022/11/25

    Publisher: Oxford University Press (OUP)

    DOI: 10.1093/brain/awac355  

    ISSN: 0006-8950

    eISSN: 1460-2156

    More details Close

    Abstract Plastic change of the neuronal system has traditionally been assumed to be governed primarily by the long-term potentiation/depression mechanisms of synaptic transmission. However, a rather simple shift in the ambient ion, transmitter and metabolite concentrations could have a pivotal role in generating plasticity upon the physiological process of learning and memory. Local brain environment and metabolic changes could also be the cause and consequences of the pathogenesis leading to epilepsy. Governing of the local brain environment is the primal function of astrocytes. The metabolic state of the entire brain is strongly linked to the activity of the lateral hypothalamus. In this study, plastic change of astrocyte reactions in the lateral hypothalamus was examined using epileptogenesis as an extreme form of plasticity. Fluorescent sensors for calcium or pH expressed in astrocytes were examined for up to one week by in vivo fibre photometry in freely moving transgenic male mice. Optical fluctuations on a timescale of seconds is difficult to assess because these signals are heavily influenced by local brain blood volume changes and pH changes. Using a newly devised method for the analysis of the optical signals, changes in Ca2+ and pH in astrocytes and changes in local brain blood volume associated with hippocampal-stimulated epileptic seizures were extracted. Following a transient alkaline shift in the astrocyte triggered by neuronal hyperactivity, a prominent acidic shift appeared in response to intensified seizure which developed with kindling. The acidic shift was unexpected as transient increase in local brain blood volume was observed in response to intensified seizures, which should lead to efficient extrusion of the acidic CO2. The acidic shift could be a result of glutamate transporter activity and/or due to the increased metabolic load of astrocytes leading to increased CO2 and lactate production. This acidic shift may trigger additional gliotransmitter release from astrocytes leading to the exacerbation of epilepsy. As all cellular enzymic reactions are influenced by Ca2+ and pH, changes in these parameters could also have an impact on the neuronal circuit activity. Thus, controlling the astrocyte pH and/or Ca2+ could be a new therapeutic target for treatment of epilepsy or prevention of undesired plasticity associated with epileptogenesis.

  15. Synaptic pruning through glial synapse engulfment upon motor learning. International-journal Peer-reviewed

    Yosuke M Morizawa, Mami Matsumoto, Yuka Nakashima, Narumi Endo, Tomomi Aida, Hiroshi Ishikane, Kaoru Beppu, Satoru Moritoh, Hitoshi Inada, Noriko Osumi, Eiji Shigetomi, Schuichi Koizumi, Guang Yang, Hirokazu Hirai, Kohichi Tanaka, Kenji F Tanaka, Nobuhiko Ohno, Yugo Fukazawa, Ko Matsui

    Nature neuroscience 25 (11) 1458-1469 2022/11

    DOI: 10.1038/s41593-022-01184-5  

    More details Close

    Synaptic pruning is a fundamental process of neuronal circuit refinement in learning and memory. Accumulating evidence suggests that glia participates in sculpting the neuronal circuits through synapse engulfment. However, whether glial involvement in synaptic pruning has a role in memory formation remains elusive. Using newly developed phagocytosis reporter mice and three-dimensional ultrastructural characterization, we found that synaptic engulfment by cerebellar Bergmann glia (BG) frequently occurred upon cerebellum-dependent motor learning in mice. We observed increases in pre- and postsynaptic nibbling by BG along with a reduction in spine volume after learning. Pharmacological blockade of engulfment with Annexin V inhibited both the spine volume reduction and overnight improvement of motor adaptation. These results indicate that BG contribute to the refinement of the mature cerebellar cortical circuit through synaptic engulfment during motor learning.

  16. Contextual fear conditioning regulates synapse-related gene transcription in mouse microglia International-journal Peer-reviewed

    Zhiqian Yu, Mai Sakai, Hotaka Fukushima, Chiaki Ono, Yoshie Kikuchi, Ryuta Koyama, Ko Matsui, Tomoyuki Furuyashiki, Satoshi Kida, Hiroaki Tomita

    Brain Research Bulletin 189 57-68 2022/10

    Publisher: Elsevier BV

    DOI: 10.1016/j.brainresbull.2022.08.017  

    ISSN: 0361-9230

    More details Close

    Microglia have been suggested to be involved in the underlying mechanism of conditional fear memory formation by regulating inflammatory cytokines. However, the mechanism linking microglia and neuronal activity related to fear conditioning remains unclear. This study characterized the transcription profile of microglia in a fear memory conditional mouse model. Compared with those in control mice microglia, the most significantly induced genes were synapse-related, whereas immune-related genes were reduced due to fear memory consolidation. Whilst the increased expression of synapse-related genes was reversed after fear memory extinction, that of immunological genes was not, strongly suggesting a connection between microglia, neurons, and a dysregulated immune response following contextual fear conditioning. Furthermore, in the hippocampal microglia, we found that the expression of neurotransmitter release regulators, γ-aminobutyric acid (GABA) receptor GABRB3 and synapsin 1/2, increased under fear memory consolidation and restored (decreased) after extinction. In addition, compared with the transcription profile in peripheral monocytes, few overlapping genes were not enriched in biological processes. Taken together, the identified conditional fear stress-induced changes in mouse microglial transcription profiles suggest that microglia-neuron communication mediates contextual fear conditioning.

  17. Optogenetic stimulus-triggered acquisition of seizure resistance International-journal Peer-reviewed

    Yoshiteru Shimoda, Kaoru Beppu, Yoko Ikoma, Yosuke M. Morizawa, Satoshi Zuguchi, Utaro Hino, Ryutaro Yano, Yuki Sugiura, Satoru Moritoh, Yugo Fukazawa, Makoto Suematsu, Hajime Mushiake, Nobukazu Nakasato, Masaki Iwasaki, Kenji F. Tanaka, Teiji Tominaga, Ko Matsui

    Neurobiology of Disease 163 105602-105602 2022/02

    Publisher: Elsevier BV

    DOI: 10.1016/j.nbd.2021.105602  

    ISSN: 0969-9961

    More details Close

    Unlike an electrical circuit, the hardware of the brain is susceptible to change. Repeated electrical brain stimulation mimics epileptogenesis. After such "kindling" process, a moderate stimulus would become sufficient in triggering a severe seizure. Here, we report that optogenetic neuronal stimulation can also convert the rat brain to a hyperexcitable state. However, continued stimulation once again converted the brain to a state that was strongly resistant to seizure induction. Histochemical examinations showed that moderate astrocyte activation was coincident with resilience acquisition. Administration of an adenosine A1 receptor antagonist instantly reverted the brain back to a hyperexcitable state, suggesting that hyperexcitability was suppressed by adenosine. Furthermore, an increase in basal adenosine was confirmed using in vivo microdialysis. Daily neuron-to-astrocyte signaling likely prompted a homeostatic increase in the endogenous actions of adenosine. Our data suggest that a certain stimulation paradigm could convert the brain circuit resilient to epilepsy without exogenous drug administration.

  18. Differential pial and penetrating arterial responses examined by optogenetic activation of astrocytes and neurons. International-journal Peer-reviewed

    Nao Hatakeyama, Miyuki Unekawa, Juri Murata, Yutaka Tomita, Norihiro Suzuki, Jin Nakahara, Hiroyuki Takuwa, Iwao Kanno, Ko Matsui, Kenji F Tanaka, Kazuto Masamoto

    Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 41 (10) 271678X211010355-2689 2021/04/25

    DOI: 10.1177/0271678X211010355  

    More details Close

    A variety of brain cells participates in neurovascular coupling by transmitting and modulating vasoactive signals. The present study aimed to probe cell type-dependent cerebrovascular (i.e., pial and penetrating arterial) responses with optogenetics in the cortex of anesthetized mice. Two lines of the transgenic mice expressing a step function type of light-gated cation channel (channelrhodopsine-2; ChR2) in either cortical neurons (muscarinic acetylcholine receptors) or astrocytes (Mlc1-positive) were used in the experiments. Photo-activation of ChR2-expressing astrocytes resulted in a widespread increase in cerebral blood flow (CBF), extending to the nonstimulated periphery. In contrast, photo-activation of ChR2-expressing neurons led to a relatively localized increase in CBF. The differences in the spatial extent of the CBF responses are potentially explained by differences in the involvement of the vascular compartments. In vivo imaging of the cerebrovascular responses revealed that ChR2-expressing astrocyte activation led to the dilation of both pial and penetrating arteries, whereas ChR2-expressing neuron activation predominantly caused dilation of the penetrating arterioles. Pharmacological studies showed that cell type-specific signaling mechanisms participate in the optogenetically induced cerebrovascular responses. In conclusion, pial and penetrating arterial vasodilation were differentially evoked by ChR2-expressing astrocytes and neurons.

  19. Glial amplification of synaptic signals. International-journal Peer-reviewed

    Kaoru Beppu, Naoko Kubo, Ko Matsui

    The Journal of physiology 599 (7) 2085-2102 2021/04

    DOI: 10.1113/JP280857  

    More details Close

    KEY POINTS: Recent studies have repeatedly demonstrated the cross-talk of heterogeneous signals between neuronal and glial circuits. Here, we investigated the mechanism and the influence of physiological interactions between neurons and glia in the cerebellum. We found that the cerebellar astrocytes, Bergmann glial cells, react to exogenously applied glutamate, glutamate transporter substrate (d-aspartate) and synaptically released glutamate. In response, the Bergmann glial cells release glutamate through volume-regulated anion channels. It is generally assumed that all of the postsynaptic current is mediated by presynaptically released glutamate. However, we showed that a part of the postsynaptic current is mediated by glutamate released from Bergmann glial cells. Optogenetic manipulation of Bergmann glial state with archaerhodpsin-T or channelrhodopsin-2 reduced or augmented the amount of glial glutamate release, respectively. Our data indicate that glutamate-induced glutamate release in Bergmann glia serves as an effective amplifier of excitatory information processing in the brain. ABSTRACT: Transmitter released from presynaptic neurons has been considered to be the sole generator of postsynaptic excitatory signals. However, astrocytes of the glial cell population have also been shown to release transmitter that can react on postsynaptic receptors. Therefore, we investigated whether astrocytes take part in generation of at least a part of the synaptic current. In this study, mice cerebellar acute slices were prepared and whole cell patch clamp recordings were performed. We found that Bergmann glial cells (BGs), a type of astrocyte in the cerebellum, reacts to a glutamate transporter substrate, d-aspartate (d-Asp) and an anion conductance is generated and glutamate is released from the BGs. Glutamate release was attenuated or augmented by modulating the state of BGs with activation of light-sensitive proteins, archaerhodopsin-T (ArchT) or channelrhodopsin-2 (ChR2) expressed on BGs, respectively. Glutamate release appears to be mediated by anion channels that can be blocked by a volume-regulated anion channel-specific blocker. Synaptic response to a train of parallel fibre stimulation was recorded from Purkinje cells. The latter part of the response was also attenuated or augmented by glial modulation with ArchT or ChR2, respectively. Thus, BGs effectively function as an excitatory signal amplifier, and a part of the 'synaptic' current is actually mediated by glutamate released from BGs. These data show that the state of BGs have potential for having direct and fundamental consequences on the functioning of information processing in the brain.

  20. Exacerbation of Epilepsy by Astrocyte Alkalization and Gap Junction Uncoupling. International-journal Peer-reviewed

    Mariko Onodera, Jan Meyer, Kota Furukawa, Yuichi Hiraoka, Tomomi Aida, Kohichi Tanaka, Kenji F Tanaka, Christine R Rose, Ko Matsui

    The Journal of neuroscience : the official journal of the Society for Neuroscience 41 (10) 2106-2118 2021/03/10

    DOI: 10.1523/JNEUROSCI.2365-20.2020  

    More details Close

    Seizures invite seizures. At the initial stage of epilepsy, seizures intensify with each episode; however, the mechanisms underlying this exacerbation remain to be solved. Astrocytes have a strong control over neuronal excitability and the mode of information processing. This control is accomplished by adjusting the levels of various ions in the extracellular space. The network of astrocytes connected via gap junctions allows a wider or more confined distribution of these ions depending on the open probability of the gap junctions. K+ clearance relies on the K+ uptake by astrocytes and the subsequent diffusion of K+ through the astrocyte network. When astrocytes become uncoupled, K+ clearance becomes hindered. Accumulation of extracellular K+ leads to hyperexcitability of neurons. Here, using acute hippocampal slices from mice, we uncovered that brief periods of epileptiform activity result in gap junction uncoupling. In slices that experienced short-term epileptiform activity, extracellular K+ transients in response to glutamate became prolonged. Na+ imaging with a fluorescent indicator indicated that intercellular diffusion of small cations in the astrocytic syncytium via gap junctions became rapidly restricted after epileptiform activity. Using a transgenic mouse with astrocyte-specific expression of a pH sensor (Lck-E2GFP), we confirmed that astrocytes react to epileptiform activity with intracellular alkalization. Application of Na+/HCO3- cotransporter blocker led to the suppression of intracellular alkalization of astrocytes and to the prevention of astrocyte uncoupling and hyperactivity intensification both in vitro and in vivo Therefore, the inhibition of astrocyte alkalization could become a promising therapeutic strategy for countering epilepsy development.SIGNIFICANCE STATEMENT We aimed to understand the mechanisms underlying the plastic change of forebrain circuits associated with the intensification of epilepsy. Here, we demonstrate that first-time exposure to only brief periods of epileptiform activity results in acute disturbance of the intercellular astrocyte network formed by gap junctions in hippocampal tissue slices from mice. Moreover, rapid clearance of K+ from the extracellular space was impaired. Epileptiform activity activated inward Na+/HCO3- cotransport in astrocytes by cell depolarization, resulting in their alkalization. Our data suggest that alkaline pH shifts in astrocytes lead to gap junction uncoupling, hampering K+ clearance, and thereby to exacerbation of epilepsy. Pharmacological intervention could become a promising new strategy to dampen neuronal hyperexcitability and epileptogenesis.

  21. Intracellular ATP levels in mouse cortical excitatory neurons varies with sleep-wake states. International-journal Peer-reviewed

    Akiyo Natsubori, Tomomi Tsunematsu, Akihiro Karashima, Hiromi Imamura, Naoya Kabe, Andrea Trevisiol, Johannes Hirrlinger, Tohru Kodama, Tomomi Sanagi, Kazuto Masamoto, Norio Takata, Klaus-Armin Nave, Ko Matsui, Kenji F Tanaka, Makoto Honda

    Communications biology 3 (1) 491-491 2020/09/07

    DOI: 10.1038/s42003-020-01215-6  

    More details Close

    Whilst the brain is assumed to exert homeostatic functions to keep the cellular energy status constant under physiological conditions, this has not been experimentally proven. Here, we conducted in vivo optical recordings of intracellular concentration of adenosine 5'-triphosphate (ATP), the major cellular energy metabolite, using a genetically encoded sensor in the mouse brain. We demonstrate that intracellular ATP levels in cortical excitatory neurons fluctuate in a cortex-wide manner depending on the sleep-wake states, correlating with arousal. Interestingly, ATP levels profoundly decreased during rapid eye movement sleep, suggesting a negative energy balance in neurons despite a simultaneous increase in cerebral hemodynamics for energy supply. The reduction in intracellular ATP was also observed in response to local electrical stimulation for neuronal activation, whereas the hemodynamics were simultaneously enhanced. These observations indicate that cerebral energy metabolism may not always meet neuronal energy demands, consequently resulting in physiological fluctuations of intracellular ATP levels in neurons.

  22. 光遺伝学的迷走神経刺激はグルコース応答性インスリン分泌を増強し膵β細胞増殖を誘導する

    川名 洋平, 今井 淳太, 井泉 知仁, 森澤 陽介, 山本 淳平, 遠藤 彰, 菅原 裕人, 木幡 将人, 山中 章弘, 松井 広, 片桐 秀樹

    糖尿病 62 (Suppl.1) S-105 2019/04

    Publisher: (一社)日本糖尿病学会

    ISSN: 0021-437X

    eISSN: 1881-588X

  23. Optogenetic astrocyte activation evokes BOLD fMRI response with oxygen consumption without neuronal activity modulation. International-journal Peer-reviewed

    Norio Takata, Yuki Sugiura, Keitaro Yoshida, Miwako Koizumi, Nishida Hiroshi, Kurara Honda, Ryutaro Yano, Yuji Komaki, Ko Matsui, Makoto Suematsu, Masaru Mimura, Hideyuki Okano, Kenji F Tanaka

    Glia 66 (9) 2013-2023 2018/09

    DOI: 10.1002/glia.23454  

    More details Close

    Functional magnetic resonance imaging (fMRI) based on the blood oxygenation level-dependent (BOLD) signal has been used to infer sites of neuronal activation in the brain. A recent study demonstrated, however, unexpected BOLD signal generation without neuronal excitation, which led us to hypothesize the presence of another cellular source for BOLD signal generation. Collective assessment of optogenetic activation of astrocytes or neurons, fMRI in awake mice, electrophysiological measurements, and histochemical detection of neuronal activation, coherently suggested astrocytes as another cellular source. Unexpectedly, astrocyte-evoked BOLD signal accompanied oxygen consumption without modulation of neuronal activity. Imaging mass spectrometry of brain sections identified synthesis of acetyl-carnitine via oxidative glucose metabolism at the site of astrocyte-, but not neuron-evoked BOLD signal. Our data provide causal evidence that astrocytic activation alone is able to evoke BOLD signal response, which may lead to reconsideration of current interpretation of BOLD signal as a marker of neuronal activation.

  24. Targeted expression of step-function opsins in transgenic rats for optogenetic studies. International-journal Peer-reviewed

    Hiroyuki Igarashi, Keiko Ikeda, Hiroshi Onimaru, Ryosuke Kaneko, Kyo Koizumi, Kaoru Beppu, Kayo Nishizawa, Yukari Takahashi, Fusao Kato, Ko Matsui, Kazuto Kobayashi, Yuchio Yanagawa, Shin-Ichi Muramatsu, Toru Ishizuka, Hiromu Yawo

    Scientific reports 8 (1) 5435-5435 2018/04/03

    DOI: 10.1038/s41598-018-23810-8  

    More details Close

    Rats are excellent animal models for experimental neuroscience. However, the application of optogenetics in rats has been hindered because of the limited number of established transgenic rat strains. To accomplish cell-type specific targeting of an optimized optogenetic molecular tool, we generated ROSA26/CAG-floxed STOP-ChRFR(C167A)-Venus BAC rats that conditionally express the step-function mutant channelrhodopsin ChRFR(C167A) under the control of extrinsic Cre recombinase. In primary cultured cortical neurons derived from this reporter rat, only Cre-positive cells expressing ChRFR(C167A) became bi-stable, that is, their excitability was enhanced by blue light and returned to the baseline by yellow~red light. In bigenic pups carrying the Phox2B-Cre driver, ChRFR(C167A) was specifically expressed in the rostral parafacial respiratory group (pFRG) in the medulla, where endogenous Phox2b immunoreactivity was detected. These neurons were sensitive to blue light with an increase in the firing frequency. Thus, this transgenic rat actuator/reporter system should facilitate optogenetic studies involving the effective in vivo manipulation of the activities of specific cell fractions using light of minimal intensity.

  25. The number and distribution of AMPA receptor channels containing fast kinetic GluA3 and GluA4 subunits at auditory nerve synapses depend on the target cells. International-journal Peer-reviewed

    María E Rubio, Ko Matsui, Yugo Fukazawa, Naomi Kamasawa, Harumi Harada, Makoto Itakura, Elek Molnár, Manabu Abe, Kenji Sakimura, Ryuichi Shigemoto

    Brain structure & function 222 (8) 3375-3393 2017/11

    DOI: 10.1007/s00429-017-1408-0  

    More details Close

    The neurotransmitter receptor subtype, number, density, and distribution relative to the location of transmitter release sites are key determinants of signal transmission. AMPA-type ionotropic glutamate receptors (AMPARs) containing GluA3 and GluA4 subunits are prominently expressed in subsets of neurons capable of firing action potentials at high frequencies, such as auditory relay neurons. The auditory nerve (AN) forms glutamatergic synapses on two types of relay neurons, bushy cells (BCs) and fusiform cells (FCs) of the cochlear nucleus. AN-BC and AN-FC synapses have distinct kinetics; thus, we investigated whether the number, density, and localization of GluA3 and GluA4 subunits in these synapses are differentially organized using quantitative freeze-fracture replica immunogold labeling. We identify a positive correlation between the number of AMPARs and the size of AN-BC and AN-FC synapses. Both types of AN synapses have similar numbers of AMPARs; however, the AN-BC have a higher density of AMPARs than AN-FC synapses, because the AN-BC synapses are smaller. A higher number and density of GluA3 subunits are observed at AN-BC synapses, whereas a higher number and density of GluA4 subunits are observed at AN-FC synapses. The intrasynaptic distribution of immunogold labeling revealed that AMPAR subunits, particularly GluA3, are concentrated at the center of the AN-BC synapses. The central distribution of AMPARs is absent in GluA3-knockout mice, and gold particles are evenly distributed along the postsynaptic density. GluA4 gold labeling was homogenously distributed along both synapse types. Thus, GluA3 and GluA4 subunits are distributed at AN synapses in a target-cell-dependent manner.

  26. Na, K-ATPase α3 is a death target of Alzheimer patient amyloid-β assembly. International-journal Peer-reviewed

    Takayuki Ohnishi, Masako Yanazawa, Tomoya Sasahara, Yasuki Kitamura, Hidekazu Hiroaki, Yugo Fukazawa, Isao Kii, Takashi Nishiyama, Akiyoshi Kakita, Hiroyuki Takeda, Akihide Takeuchi, Yoshie Arai, Akane Ito, Hitomi Komura, Hajime Hirao, Kaori Satomura, Masafumi Inoue, Shin-ichi Muramatsu, Ko Matsui, Mari Tada, Michio Sato, Eri Saijo, Yoshiki Shigemitsu, Satoko Sakai, Yoshitaka Umetsu, Natsuko Goda, Naomi Takino, Hitoshi Takahashi, Masatoshi Hagiwara, Tatsuya Sawasaki, Genji Iwasaki, Yu Nakamura, Yo-ichi Nabeshima, David B Teplow, Minako Hoshi

    Proceedings of the National Academy of Sciences of the United States of America 112 (32) E4465-74-E4474 2015/08/11

    DOI: 10.1073/pnas.1421182112  

    ISSN: 0027-8424

  27. Unveiling astrocytic control of cerebral blood flow with optogenetics. International-journal Peer-reviewed

    Kazuto Masamoto, Miyuki Unekawa, Tatsushi Watanabe, Haruki Toriumi, Hiroyuki Takuwa, Hiroshi Kawaguchi, Iwao Kanno, Ko Matsui, Kenji F Tanaka, Yutaka Tomita, Norihiro Suzuki

    Scientific reports 5 11455-11455 2015/06/16

    DOI: 10.1038/srep11455  

    ISSN: 2045-2322

  28. Nanoscale distribution of presynaptic Ca(2+) channels and its impact on vesicular release during development. International-journal Peer-reviewed

    Yukihiro Nakamura, Harumi Harada, Naomi Kamasawa, Ko Matsui, Jason S Rothman, Ryuichi Shigemoto, R Angus Silver, David A DiGregorio, Tomoyuki Takahashi

    Neuron 85 (1) 145-158 2015/01/07

    DOI: 10.1016/j.neuron.2014.11.019  

    ISSN: 0896-6273

    eISSN: 1097-4199

  29. In vivo visualization of subtle, transient, and local activity of astrocytes using an ultrasensitive Ca(2+) indicator. International-journal Peer-reviewed

    Kazunori Kanemaru, Hiroshi Sekiya, Ming Xu, Kaname Satoh, Nami Kitajima, Keitaro Yoshida, Yohei Okubo, Takuya Sasaki, Satoru Moritoh, Hidetoshi Hasuwa, Masaru Mimura, Kazuki Horikawa, Ko Matsui, Takeharu Nagai, Masamitsu Iino, Kenji F Tanaka

    Cell reports 8 (1) 311-8 2014/07/10

    DOI: 10.1016/j.celrep.2014.05.056  

    ISSN: 2211-1247

  30. Optogenetic countering of glial acidosis suppresses glial glutamate release and ischemic brain damage. International-journal Peer-reviewed

    Kaoru Beppu, Takuya Sasaki, Kenji F Tanaka, Akihiro Yamanaka, Yugo Fukazawa, Ryuichi Shigemoto, Ko Matsui

    Neuron 81 (2) 314-20 2014/01/22

    DOI: 10.1016/j.neuron.2013.11.011  

    ISSN: 0896-6273

    eISSN: 1097-4199

  31. Kv4.2 potassium channels segregate to extrasynaptic domains and influence intrasynaptic NMDA receptor NR2B subunit expression. International-journal Peer-reviewed

    Walter A Kaufmann, Ko Matsui, Andreas Jeromin, Jeanne M Nerbonne, Francesco Ferraguti

    Brain structure & function 218 (5) 1115-32 2013/09

    DOI: 10.1007/s00429-012-0450-1  

    ISSN: 1863-2653

  32. Quantitative localization of Cav2.1 (P/Q-type) voltage-dependent calcium channels in Purkinje cells: somatodendritic gradient and distinct somatic coclustering with calcium-activated potassium channels. International-journal Peer-reviewed

    Dwi Wahyu Indriati, Naomi Kamasawa, Ko Matsui, Andrea L Meredith, Masahiko Watanabe, Ryuichi Shigemoto

    The Journal of neuroscience : the official journal of the Society for Neuroscience 33 (8) 3668-78 2013/02/20

    DOI: 10.1523/JNEUROSCI.2921-12.2013  

    ISSN: 0270-6474

  33. Evaluation of glutamate concentration transient in the synaptic cleft of the rat calyx of Held. International-journal Peer-reviewed

    Timotheus Budisantoso, Harumi Harada, Naomi Kamasawa, Yugo Fukazawa, Ryuichi Shigemoto, Ko Matsui

    The Journal of physiology 591 (1) 219-39 2013/01/01

    DOI: 10.1113/jphysiol.2012.241398  

    ISSN: 0022-3751

  34. Application of an optogenetic byway for perturbing neuronal activity via glial photostimulation. International-journal Peer-reviewed

    Takuya Sasaki, Kaoru Beppu, Kenji F Tanaka, Yugo Fukazawa, Ryuichi Shigemoto, Ko Matsui

    Proceedings of the National Academy of Sciences of the United States of America 109 (50) 20720-5 2012/12/11

    DOI: 10.1073/pnas.1213458109  

    ISSN: 0027-8424

  35. Quantitative regional and ultrastructural localization of the Ca(v)2.3 subunit of R-type calcium channel in mouse brain. International-journal Peer-reviewed

    Laxmi Kumar Parajuli, Chikako Nakajima, Akos Kulik, Ko Matsui, Toni Schneider, Ryuichi Shigemoto, Yugo Fukazawa

    The Journal of neuroscience : the official journal of the Society for Neuroscience 32 (39) 13555-67 2012/09/26

    DOI: 10.1523/JNEUROSCI.1142-12.2012  

    ISSN: 0270-6474

    eISSN: 1529-2401

  36. Expanding the repertoire of optogenetically targeted cells with an enhanced gene expression system. International-journal Peer-reviewed

    Kenji F Tanaka, Ko Matsui, Takuya Sasaki, Hiromi Sano, Shouta Sugio, Kai Fan, René Hen, Junichi Nakai, Yuchio Yanagawa, Hidetoshi Hasuwa, Masaru Okabe, Karl Deisseroth, Kazuhiro Ikenaka, Akihiro Yamanaka

    Cell reports 2 (2) 397-406 2012/08/30

    DOI: 10.1016/j.celrep.2012.06.011  

    ISSN: 2211-1247

  37. Virus-mediated swapping of zolpidem-insensitive with zolpidem-sensitive GABA(A) receptors in cortical pyramidal cells. International-journal Peer-reviewed

    Mate Sumegi, Yugo Fukazawa, Ko Matsui, Andrea Lorincz, Mark D Eyre, Zoltan Nusser, Ryuichi Shigemoto

    The Journal of physiology 590 (7) 1517-34 2012/04/01

    DOI: 10.1113/jphysiol.2012.227538  

    ISSN: 0022-3751

  38. Thin dendrites of cerebellar interneurons confer sublinear synaptic integration and a gradient of short-term plasticity. International-journal Peer-reviewed

    Therese Abrahamsson, Laurence Cathala, Ko Matsui, Ryuichi Shigemoto, David A Digregorio

    Neuron 73 (6) 1159-72 2012/03/22

    DOI: 10.1016/j.neuron.2012.01.027  

    ISSN: 0896-6273

    eISSN: 1097-4199

  39. Mechanisms underlying signal filtering at a multisynapse contact. International-journal Peer-reviewed

    Timotheus Budisantoso, Ko Matsui, Naomi Kamasawa, Yugo Fukazawa, Ryuichi Shigemoto

    The Journal of neuroscience : the official journal of the Society for Neuroscience 32 (7) 2357-76 2012/02/15

    DOI: 10.1523/JNEUROSCI.5243-11.2012  

    ISSN: 0270-6474

  40. Input-specific intrasynaptic arrangements of ionotropic glutamate receptors and their impact on postsynaptic responses. International-journal Peer-reviewed

    Etsuko Tarusawa, Ko Matsui, Timotheus Budisantoso, Elek Molnár, Masahiko Watanabe, Minoru Matsui, Yugo Fukazawa, Ryuichi Shigemoto

    The Journal of neuroscience : the official journal of the Society for Neuroscience 29 (41) 12896-908 2009/10/14

    DOI: 10.1523/JNEUROSCI.6160-08.2009  

    ISSN: 0270-6474

  41. Bioimaging with Two-Photon-Induced Luminescence from Triangular Nanoplates and Nanoparticle Aggregates of Gold Peer-reviewed

    Yuqiang Jiang, Noriko Nishizawa Horimoto, Kohei Imura, Hiromi Okamoto, Ko Matsui, Ryuichi Shigemoto

    ADVANCED MATERIALS 21 (22) 2309-+ 2009/06

    DOI: 10.1002/adma.200802312  

    ISSN: 0935-9648

  42. Exocytosis unbound. International-journal Invited

    Ko Matsui, Craig E Jahr

    Current opinion in neurobiology 16 (3) 305-11 2006/06

    DOI: 10.1016/j.conb.2006.04.001  

    ISSN: 0959-4388

  43. High-concentration rapid transients of glutamate mediate neural-glial communication via ectopic release. International-journal Peer-reviewed

    Ko Matsui, Craig E Jahr, Maria E Rubio

    The Journal of neuroscience : the official journal of the Society for Neuroscience 25 (33) 7538-47 2005/08/17

    DOI: 10.1523/JNEUROSCI.1927-05.2005  

    ISSN: 0270-6474

    eISSN: 1529-2401

  44. Differential control of synaptic and ectopic vesicular release of glutamate. International-journal Peer-reviewed

    Ko Matsui, Craig E Jahr

    The Journal of neuroscience : the official journal of the Society for Neuroscience 24 (41) 8932-9 2004/10/13

    DOI: 10.1523/JNEUROSCI.2650-04.2004  

    ISSN: 0270-6474

    eISSN: 1529-2401

  45. Ectopic release of synaptic vesicles. International-journal Peer-reviewed

    Ko Matsui, Craig E Jahr

    Neuron 40 (6) 1173-83 2003/12/18

    DOI: 10.1016/S0896-6273(03)00788-8  

    ISSN: 0896-6273

  46. Modulation of excitatory synaptic transmission by GABA(C) receptor-mediated feedback in the mouse inner retina Peer-reviewed

    K Matsui, J Hasegawa, M Tachibana

    JOURNAL OF NEUROPHYSIOLOGY 86 (5) 2285-2298 2001/11

    ISSN: 0022-3077

  47. Active role of glutamate uptake in the synaptic transmission from retinal nonspiking neurons Peer-reviewed

    K Matsui, N Hosoi, M Tachibana

    JOURNAL OF NEUROSCIENCE 19 (16) 6755-6766 1999/08

    ISSN: 0270-6474

  48. Excitatory synaptic transmission in the inner retina: Paired recordings of bipolar cells and neurons of the ganglion cell layer Peer-reviewed

    K Matsui, N Hosoi, M Tachibana

    JOURNAL OF NEUROSCIENCE 18 (12) 4500-4510 1998/06

    ISSN: 0270-6474

  49. Two components of transmitter release in retinal bipolar cells: Exocytosis and mobilization of synaptic vesicles Peer-reviewed

    T Sakaba, M Tachibana, K Matsui, N Minami

    NEUROSCIENCE RESEARCH 27 (4) 357-370 1997/04

    DOI: 10.1016/S0168-0102(97)01168-1  

    ISSN: 0168-0102

  50. Author Correction: Optogenetic stimulation of vagal nerves for enhanced glucose-stimulated insulin secretion and β cell proliferation. International-journal

    Yohei Kawana, Junta Imai, Yosuke M Morizawa, Yoko Ikoma, Masato Kohata, Hiroshi Komamura, Toshihiro Sato, Tomohito Izumi, Junpei Yamamoto, Akira Endo, Hiroto Sugawara, Haremaru Kubo, Shinichiro Hosaka, Yuichiro Munakata, Yoichiro Asai, Shinjiro Kodama, Kei Takahashi, Keizo Kaneko, Shojiro Sawada, Tetsuya Yamada, Akira Ito, Kuniyasu Niizuma, Teiji Tominaga, Akihiro Yamanaka, Ko Matsui, Hideki Katagiri

    Nature biomedical engineering 2024/04/02

    DOI: 10.1038/s41551-024-01200-y  

  51. Function and breakdown of the neuron-glia dual-layer super-network. Invited Peer-reviewed

    Ko Matsui

    BRAIN and NERVE 73 (7) 769-779 2021/07

  52. Region-Specific and State-Dependent Astrocyte Ca2+ Dynamics during the Sleep-Wake Cycle in Mice International-journal Peer-reviewed

    Tomomi Tsunematsu, Shuzo Sakata, Tomomi Sanagi, Kenji F. Tanaka, Ko Matsui

    The Journal of Neuroscience 41 (25) 5440-5452 2021/06/23

    Publisher: Society for Neuroscience

    DOI: 10.1523/jneurosci.2912-20.2021  

    ISSN: 0270-6474

    eISSN: 1529-2401

    More details Close

    Neural activity is diverse, and varies depending on brain regions and sleep/wakefulness states. However, whether astrocyte activity differs between sleep/wakefulness states, and whether there are differences in astrocyte activity among brain regions remain poorly understood. Therefore, in this study, we recorded astrocyte intracellular calcium (Ca2+) concentrations of mice during sleep/wakefulness states in the cortex, hippocampus, hypothalamus, cerebellum, and pons using fiber photometry. For this purpose, male transgenic mice expressing the genetically encoded ratiometric Ca2+ sensor YCnano50 specifically in their astrocytes were used. We demonstrated that Ca2+ levels in astrocytes substantially decrease during rapid eye movement (REM) sleep, and increase after the onset of wakefulness. In contrast, differences in Ca2+ levels during non-rapid eye movement (NREM) sleep were observed among the different brain regions, and no significant decrease was observed in the hypothalamus and pons. Further analyses focusing on the transition between sleep/wakefulness states and correlation analysis with the duration of REM sleep showed that Ca2+ dynamics differs among brain regions, suggesting the existence of several clusters; i.e., the first comprising the cortex and hippocampus, the second comprising the hypothalamus and pons, and the third comprising the cerebellum. Our study thus demonstrated that astrocyte Ca2+ levels change substantially according to sleep/wakefulness states. These changes were consistent in general unlike neural activity. However, we also clarified that Ca2+ dynamics varies depending on the brain region, implying that astrocytes may play various physiological roles in sleep.SIGNIFICANCE STATEMENTSleep is an instinctive behavior of many organisms. In the previous five decades, the mechanism of the neural circuits controlling sleep/wakefulness states and the neural activities associated with sleep/wakefulness states in various brain regions have been elucidated. However, whether astrocytes, which are a type of glial cell, change their activity during different sleep/wakefulness states was poorly understood. Here, we demonstrated that dynamic changes in astrocyte Ca2+ concentrations occur in the cortex, hippocampus, hypothalamus, cerebellum, and pons of mice during natural sleep. Further analyses demonstrated that Ca2+ dynamics slightly differ among different brain regions, implying that the physiological roles of astrocytes in sleep/wakefulness might vary depending on the brain region.

  53. Cytosolic pH as a messenger signal used in brain information processing.

    Ko Matsui

    Nihon yakurigaku zasshi. Folia pharmacologica Japonica 148 (2) 64-8 2016/08

    DOI: 10.1254/fpj.148.64  

  54. Casting light on the role of Glial cells in brain function

    Matsui, K.

    Optogenetics: Light-Sensing Proteins and their Applications 2015

    Publisher: Optogenetics: Light-Sensing Proteins and their Applications

    DOI: 10.1007/978-4-431-55516-2_22  

  55. [Novel function of astrocytes revealed by optogenetics].

    Kaoru Beppu, Ko Matsui

    Nihon rinsho. Japanese journal of clinical medicine 72 (12) 2243-9 2014/12

    ISSN: 0047-1852

    More details Close

    Astrocytes respond to neuronal activity. However, whether astrocytic activity has any significance in brain function is unknown. Signaling pathway leading from astrocytes to neurons would be required for astrocytes to participate in neuronal functions and, here, we investigated the presence of such pathway. Optogenetics was used to manipulate astrocytic activity. A light-sensitive protein, channelrhodopsin-2 (ChR2), was selectively expressed in astrocytes. Photostimulation of these astrocytes induced glutamate release which modulated neuronal activity and animal behavior. Such glutamate release was triggered by intracellular acidification produced by ChR2 photoactivation. Astrocytic acidification occurs upon brain ischemia, and we found that another optogenetic tool, archaerhodopsin (ArchT), could counter the acidification and suppress astrocytic glutamate release. Controlling of astrocytic pH may become a therapeutic strategy upon ischemia.

  56. [Mind control with optogenetic mice: exploring the causal relationships between brain activity and the mind]. Invited

    Ko Matsui

    Brain and nerve = Shinkei kenkyu no shinpo 65 (6) 609-21 2013/06

    ISSN: 1881-6096

  57. [Ultrastructural insights of postsynaptic glutamate receptor organization]. Invited

    Yugo Fukazawa, Etsuko Tarusawa, Ko Matsui, Ryuichi Shigemoto

    Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme 53 (4 Suppl) 436-41 2008/03

    Publisher: 4 Suppl

    ISSN: 0039-9450

  58. The great escape of glutamate from the depth of presynaptic invaginations. International-journal Invited

    Ko Matsui, Henrique von Gersdorff

    Neuron 50 (5) 669-71 2006/06/01

    DOI: 10.1016/j.neuron.2006.05.012  

    ISSN: 0896-6273

Show all ︎Show first 5

Misc. 41

  1. 小脳グリア細胞が攻撃行動制御に果たす役割 Invited

    松井 広

    生体の科学 76 (1) 62-67 2025/02

  2. 病を調べて心を知る Invited

    松井 広

    時事通信社 厚生福祉 第6937号 (進言) 11 2024/11

  3. シータとサン:グリア細胞による神経調律機能 Invited

    松井 広

    細胞 56 (8) 575-578 2024

  4. 迷走神経刺激による脳内局所環境変化の解明と神経発振制御法の開拓 Invited

    松井 広

    てんかん治療研究振興財団 研究年報 2024 35 103-108 2024

  5. 三次元電子顕微鏡で捉えたグリア細胞によるシナプス貪食の瞬間 Invited

    森澤 陽介, 松井 広

    生体の科学 75 (5) 402-403 2024

  6. 超回路脳機能からてんかんを知る Invited

    松井 広

    てんかんケア 仙台 2024-1 38 57-81 2024

  7. Synaptic pruning through glial synapse engulfment upon motor learning Invited

    Yosuke M Morizawa, Ko Matsui

    実験医学 41 (6) 957-960 2023/04

    DOI: 10.18958/7223-00003-0000406-00  

  8. Control of the central brain environment by vagus nerve stimulation Peer-reviewed

    Yoko Ikoma, Ko Matsui

    The Autonomic Nervous System 59 (4) 366-370 2022/12

    Publisher: 日本自律神経学会

    DOI: 10.32272/ans.59.4_366  

    ISSN: 0288-9250

    eISSN: 2434-7035

  9. Role of astrocytes in memory function Invited

    Ko Matsui

    Dementia Japan 36 213-223 2022/04

  10. 脳内デュアルレイヤー情報処理機構とその破綻による脳病態機序 Invited Peer-reviewed

    松井 広

    BRAIN and NERVE 73 (7) 769-779 2021/07

  11. アストロサイト活動光操作による脳機能制御 Invited

    別府 薫, 松井 広

    実験医学増刊 37 (17) 136-143 2019/10

  12. グリア細胞による貪食を介した脳内リモデリング Invited

    森澤陽介, 松井 広, 小泉修一

    実験医学増刊 37 (17) 65-72 2019/10

  13. 序にかえて-にかわ脳-Glue Brain Project- Invited

    松井 広, 田中謙二

    実験医学増刊 37 (17) 3-7 2019/10

  14. 脳の半分を占める グリア細胞:脳と心と体をつなぐ"膠" Invited

    松井 広, 田中謙二

    実験医学増刊 37 (17) 2019/10

  15. 視床下部コルチコトロピン放出因子(CRF)ニューロンを調節する神経性入力の同定

    杉原史章, 籠谷勇人, 佐々木昭太郎, 内田克哉, 佐藤達也, 松井広, 崎村建司, 井樋慶一

    日本下垂体研究会学術集会プログラム・講演要旨集 33rd 50 2018/09

  16. 神経画像最前線 神経機能の可視化はどこまで進んだか オプトジェネティクスを用いたアストロサイト・ニューロン賦活による脳血流空間伝播の比較

    畠山 菜緒, 正本 和人, 畝川 美悠紀, 田桑 弘之, 菅野 巖, 松井 広, 田中 謙二, 冨田 裕, 鈴木 則宏

    脳循環代謝 28 (1) 137-137 2016/11

    Publisher: 日本脳循環代謝学会

    ISSN: 0915-9401

  17. 神経科学を越えた光遺伝学の応用可能性 Invited Peer-reviewed

    松井 広

    日本レーザー医学誌 36 473-477 2016/10

  18. 脳内情報処理を担うpHの役割:アストロサイト光操作法を用いた新展開 Invited Peer-reviewed

    松井 広

    日薬理誌 148 64-68 2016/08

  19. イオン濃度操作ツールとしてのオプトジェネティクス Invited Peer-reviewed

    松井 広

    実験医学 33 3074-3078 2015/11

  20. 光遺伝学による脳血流の操作

    正本和人, 正本和人, 正本和人, 畝川美悠紀, 渡辺竜志, 結城浩弥, 田桑弘之, 川口拓之, 菅野巖, 松井広, 田中謙二, 冨田裕, 鈴木則宏

    レーザー学会研究会報告 467th 43-47 2014/11/07

  21. グリア機能の光制御から見えてきた脳科学研究の新しい地平 Invited

    松井 広

    細胞工学 33 (3) 275-280 2014/03

  22. 光遺伝学のグリア細胞への応用と新知見 Invited Peer-reviewed

    別府 薫, 松井 広

    日本臨牀, 72: 2243-2249. 72 2243-2249 2014/01

  23. アストロサイト賦活による局所脳血流反応の空間伝播の解析

    WATANABE RYUJI, MASAMOTO KAZUTO, MASAMOTO KAZUTO, UNEKAWA MIYUKI, YUKI HIROYA, NITTA MASAHIRO, TORIUMI HARUKI, TAGUWA HIROYUKI, KAWAGUCHI HIROSHI, KANNO IWAO, MATSUI KO, TANAKA KENJI, TOMITA YUTAKA, SUZUKI NORIHIRO

    日本脳循環代謝学会総会プログラム・抄録号 26th 228 2014

    ISSN: 0915-9401

  24. 心に占めるグリア細胞の役割-光操作技術のもたらすパラダイム・シフト Invited

    松井 広

    実験医学 31 (11) 1712-1717 2013/07

  25. マウスの心の光操作-脳細胞活動と心の機能の因果関係を探る Invited

    松井 広

    BRAIN and NERVE 65 (6) 609-621 2013/06

  26. Glia-driven neuronal activity and behavior

    Kaoru Beppu, Takuya Sasaki, Kenji Tanaka, Yugo Fukazawa, Ryuichi Shigemoto, Ko Matsui

    JOURNAL OF PHYSIOLOGICAL SCIENCES 63 S190-S190 2013

    ISSN: 1880-6546

  27. Optogeneticsを用いたアストロサイト賦活による脳血流反応

    渡部竜志, 正本和人, 畝川美悠紀, 鳥海春樹, 谷口順子, 田桑弘之, 川口拓之, 伊藤浩, 菅野巖, 松井広, 田中謙二, 冨田裕, 鈴木則宏

    脳循環代謝 25 (1) 186 2013

    ISSN: 0915-9401

  28. 視床:単なる中継核ではない‐生理学的基礎 Invited

    松井 広

    Clinical Neuroscience 31 (1) 24-26 2013/01

  29. 生きたままのマウスの脳細胞を光で操作する技術の開発 Invited

    松井 広, 田中 謙二

    O plus E 34 (11) 1085-1090 2012/11

    Publisher: アドコム・メディア

    ISSN: 0911-5943

  30. Presynaptic, postsynaptic, and morphological determinants of signal transmission at the retinogeniculate synapse

    Ko Matsui, Timotheus Budisantoso, Naomi Kamasawa, Yugo Fukazawa, Ryuichi Shigemoto

    NEUROSCIENCE RESEARCH 68 E232-E232 2010

    DOI: 10.1016/j.neures.2010.07.1025  

    ISSN: 0168-0102

  31. DEVELOPMENT AND FUNCTION OF GLUTAMATE RECEPTOR CLUSTERING IN THE CALYX OF HELD SYNAPSES

    Naomi Kamasawa, Ko Matsui, Timotheus Budisantoso, Ryuichi Shigemoto

    JOURNAL OF PHYSIOLOGICAL SCIENCES 59 135-135 2009

    ISSN: 1880-6546

  32. Developmental clustering of glutamate receptors in the Calyx of Held Synapses

    Naomi Kamasawa, Ko Matsui, Timotheus Budisantoso, Ryuichi Shigemoto

    NEUROSCIENCE RESEARCH 65 S142-S142 2009

    DOI: 10.1016/j.neures.2009.09.710  

    ISSN: 0168-0102

  33. グルタミン酸受容体のシナプス内分布とその生理的意義 Invited

    深澤 有吾, 足澤 悦子, 松井 広, 重本隆一

    蛋白質核酸酵素 53 (4) 436-441 2008/03

  34. Input-specific intrasynaptic arrangement of AMPA receptors and its influence on properties of postsynaptic response

    Etsuko Tarusawa, Yugo Fukazawa, Ko Matsui, Elek Molnar, Masahiko Watanabe, Ryuichi Shigemoto

    NEUROSCIENCE RESEARCH 61 S218-S218 2008

    ISSN: 0168-0102

  35. The role of neural-glial communication in dynamic remodeling of the extracellular space

    Ko Matsui

    NEUROSCIENCE RESEARCH 55 S6-S6 2006

    ISSN: 0168-0102

  36. 米国ポートランドのヴォラム研究所より

    松井 広

    日本生理学雜誌 65 (3) 99-100 2003/03/01

    ISSN: 0031-9341

  37. 網膜におけるペアレコーディング

    松井 広, 細井 延武, 立花 政夫

    日本生理学雜誌 62 (10) 279-281 2000/10/01

    Publisher: 日本生理学会

    ISSN: 0031-9341

  38. 網膜における興奮生シナプス伝達 : 双極細胞と神経細胞からの同時記録による解析

    松井 広

    日本生理学雜誌 62 (4) 137-138 2000/04/01

    ISSN: 0031-9341

  39. 睡眠覚醒のスイッチ Invited Peer-reviewed

    常松 友美, 松井 広

    Clinical Neuroscience 37 793-797 2019/07

  40. 光遺伝学的迷走神経刺激はグルコース応答性インスリン分泌を増強し膵β細胞増殖を誘導する

    川名洋平, 今井淳太, 井泉知仁, 森澤陽介, 山本淳平, 遠藤彰, 菅原裕人, 木幡将人, 山中章弘, 松井広, 片桐秀樹

    糖尿病(Web) 62 (Suppl) 2019

    ISSN: 1881-588X

  41. 睡眠の光操作とグリア細胞機能の役割 Invited

    Tomomi Tsunematsu, Yosuke Morizawa, Ko Matsui

    Clinical Neuroscience 36 925-928 2018/08

Show all ︎Show first 5

Books and Other Publications 6

  1. カンデル神経科学 第2版

    松井広

    メディカル・サイエンス・インターナショナル 2022/09

    ISBN: 9784815730550

  2. Annual Review 神経 2021

    松井 広

    中外医学社 2021/06

    ISBN: 9784498328709

  3. 基礎心理学実験法ハンドブック

    松井 広

    朝倉書店 2018/06

    ISBN: 9784254520231

  4. スタンフォード神経生物学

    松井 広

    メディカル・サイエンス・インターナショナル 2017/08

    ISBN: 9784895928885

  5. Optogenetics: Light-sensing proteins and their applications

    Ko Matsui

    Springer 2015/01

  6. オプトジェネティクス-光工学と遺伝学による行動抑制技術の最前線

    松井 広

    エヌ・ティー・エス 2013/04

    ISBN: 9784864690713

Show all Show first 5

Presentations 103

  1. Cerebellar glial control of memory and behavior Invited

    Ko Matsui

    Tohoku-NYCU Online Seminar for Neuroscience 2025/04/16

  2. Cellular symphony of emotions: astrocytic ion dynamics in anxiety, aggression, and fear. Invited

    Ko Matsui

    Tohoku Forum of Creativity "Spinning the Future of Communication" 2025/03/26

  3. 脳の病を調べることで心の機能を明らかにする Invited

    松井 広

    第32回「CopeLab.」研究紹介セミナー 2025/02/20

  4. 超回路脳機能からてんかんを知る Invited

    松井 広

    第55回記念 仙台てんかん医学市民講座 IV「新しいてんかんの世界」 2024/06/08

  5. Glial function in sleep in health and disease Invited

    松井 広

    第66回日本小児神経学会学術集会 シンポジウム「グリア細胞:多様な生理機能と神経疾患の病態生理」 2024/05/30

  6. 超微細形態ダイナミクス解析への挑戦:グリアによるシナプス貪食が支える記憶学習 Invited

    松井 広, 深澤 有吾

    生命科学4プラットフォーム 支援説明会・成果シンポジウム 2024/04/23

  7. 神経シナプスのグリア貪食:三次元電子顕微鏡解析 Invited

    松井 広

    第101回 日本生理学会大会 ランチョンセミナー 2024/03/29

  8. 心とは何か?光と電気と電脳で追究する最先端脳科学!. Invited

    松井 広

    一般財団法人 バイオインダストリー協会 宮田満のバイオ・アメイジング~緊急対談 2024/03/19

  9. 迷走神経刺激による脳内局所環境変化の解明と神経発振制御法の開拓 Invited

    松井 広

    公益財団法人てんかん治療研究振興財団第35回研究報告会 2024/03/01

  10. Metaplasticity augmentation by acid glia in cerebellar motor learning Invited

    Ko Matsui

    The 10th FAOPS congress - Symposium: Glial control of brain function in health and disease 2023/11/01

  11. Astrocyte control of learning and memory Invited

    Ko Matsui

    KIST seminar (invited by Keiko Tanaka-Yamamoto) 2023/10/30

  12. The hidden role of pH changes in the brain: Astrocyte pH and epilepsy Invited

    松井 広

    第56回日本てんかん学会学術集会 2023/10/19

  13. Dual synaptic plasticity differentially controlled by glia Invited

    Ko Matsui

    The 50th Naito Conference: Glia World 2023/10/12

  14. Glial control of functional and structural synaptic plasticity Invited

    Ko Matsui

    The 16th Annual Meeting of Chinese Neuroscience Society & The 2nd CJK International Meeting 2023/07/30

  15. てんかんにおけるグリア細胞の役割 Invited

    松井 広

    第19回 日本てんかん学会近畿地方会 2023/07/23

  16. Glial control of parallel memory processing Invited

    Ko Matsui

    Symposium Tohoku - KU Leuven 2023/06/06

  17. Optical signal detection of local brain environmental changes inepilepsy and sleep Invited

    Ko Matsui

    Cold Spring Harbor Asia Meeting Novel Insights into Glia Function & Dysfunction 2023/04/25

  18. 小脳依存性運動学習のグリア細胞制御 Invited

    松井広

    日本小脳学会 第13回 学術集会・総会 2023/03/25

  19. Role of acid glia in the generation of extreme plasticity Invited

    Ko Matsui

    3rd International Symposium on Brain Information Dynamics 2023 2023/01/23

  20. Differential glial control of parallel memory formation Invited

    Ko Matsui

    OIST seminar by Synapse Biology Unit (invited by Yukiko Goda) 2022/12/21

  21. Optical Signals, Where Art Thou? Invited

    Ko Matsui

    University of Copenhagen seminar (invited by Hajime Hirase) 2022/12/05

  22. Advanced imaging techniques to visualise the epileptogenic zone Invited

    Ko Matsui

    14th Asian & Oceanian Epilepsy Congress (AOEC) 2022/11/17

  23. Glial control of learning and memory Invited

    Ko Matsui

    Heterogeneity of Glial Functions in Development and Disease 2022/10/14

  24. Parallel memory processing in the cerebellum Invited

    Ko Matsui

    台大神經生物與認知科學研究中心17周年記念「脳力全開 Brain power in full swing」 2022/10/03

  25. Basic properties of cortical wave of neuronal signals are governed by the state of the brain

    Donen Y, Matsui K

    The Annual Meeting of the Japan Neuroscience Society 2022/07/02

  26. The role of cerebellar glial activity in aggressive behavior

    Asano Y, Matsui K

    The Annual Meeting of the Japan Neuroscience Society 2022/06/30

  27. Glial origin of epilepsy

    Onishi I, Araki S, Matsui K

    Annual Meeting of The Physiological Society of Japan 2022/03/16

  28. Changes in ATP energy dynamics in the brain

    Furukawa K, Matsui K

    Annual Meeting of The Physiological Society of Japan 2022/03/16

  29. Brain state effects on cortical signal transmission

    Donen Y, Matsui K

    Annual Meeting of The Physiological Society of Japan 2022/03/16

  30. Plasticity of brain environment upon development of epilepsy

    Ikoma Y, Sasaki D, Matsui K

    Annual Meeting of The Physiological Society of Japan 2022/03/16

  31. Astrocytic control of anxiety

    Tan W, Matsui K

    Annual Meeting of The Physiological Society of Japan 2022/03/16

  32. Astrocytic regulation of homeostatic learning Invited

    Kanaya T, Matsui K

    Annual Meeting of The Physiological Society of Japan 2022/03/16

  33. Extreme adaptation and glial meta-plasticity control Invited

    Sasaki D, Kanaya T, Matsui K

    Annual Meeting of The Physiological Society of Japan 2022/03/16

  34. 心身連関の仲介する脳内グリア機能の計測と操作 Invited

    松井 広

    第25回日本心療内科学会学術大会 2021/10/24

  35. 迷走神経刺激による中枢脳内環境制御

    生駒 葉子, 荒木 峻, 古川 孝太, 松井 広

    第74回日本自律神経学会総会 2021/10/23

  36. Glial induced mechanism of meta-plastic modulation

    Yamao H, Matsui K

    The Annual Meeting of the Japan Neuroscience Society 2021/07/28

  37. Optical pursuit of epileptogenesis

    Ikoma Y, Matsui K

    The Annual Meeting of the Japan Neuroscience Society 2021/07/28

  38. Energy management in neurons upon epilepsy

    Furukawa K, Matsui K

    The Annual Meeting of the Japan Neuroscience Society 2021/07/28

  39. Dynamics of meta-plasticity induced by stroke

    Sasaki D, Kanaya T, Matsui K

    The Annual Meeting of the Japan Neuroscience Society 2021/07/28

  40. Metaplastic switching by astrocytes

    Yamao H, Matsui K

    XV Europian Meeting on Glial Cells in Health and Disease 2021/07/05

  41. Glial switch of fear memory formation

    Yamao H, Matsui K

    Annual Meeting of The Physiological Society of Japan 2021/03/28

  42. Energizing epilepsy

    Furukawa K, Matsui K

    Annual Meeting of The Physiological Society of Japan 2021/03/28

  43. Generation of the epileptic focus by glia

    Araki S, Ito R, Matsui K

    Annual Meeting of The Physiological Society of Japan 2021/03/28

  44. Glial contribution to the early phase of the parallel memory formation process

    Kanaya T, Sasaki D, Ito R, Yamao H, Beppu K, Matsui K

    Annual Meeting of The Physiological Society of Japan 2021/03/28

  45. in vivo glial pH in epilepsy

    Ikoma Y, Matsui K

    Annual Meeting of The Physiological Society of Japan 2021/03/28

  46. グリア・オプトジェネティクスで解き明かす学習記憶の成立条件 Invited

    松井広

    第39回 日本認知症学会学術集会 2020/11/26

  47. 脳内グリア細胞内 pH が制御する情報処理特性と病態 Invited

    松井 広

    第93回 日本生化学会大会 2020/09/14

  48. アストロサイト間ギャップ結合閉塞によるてんかん重篤化機構の解明

    小野寺 麻理子、松井 広

    第43回 日本神経科学大会 2020/07/29

  49. 神経活動の発振を封じ込める内因性機構の賦活化 Invited

    松井広

    第62回 日本脳循環代謝学会 学術集会 2019/11/29

  50. Meta-information control of the brain via glial functions Invited

    Ko Matsui

    National Taiwan University - Tohoku University Neuroscience Symposium 2019/11/25

  51. Optogenetic stimulus-triggered acquisition of resilience Invited

    Ko Matsui

    Neural Oscillation Conference 2019 2019/11/18

  52. オプトジェネティクスによるてんかん病態解析と制御 Invited

    松井広

    第48回 関東機能的脳外科カンファレンス 2019/09/07

  53. Glial optogenetics for understanding the cross talk between metabolism and information processing International-presentation Invited

    Ko Matsui

    9th FAOPS Congress 2019/03/27

  54. Role of glial phagocytosis of synapses in physiological memory engravement process International-presentation

    Yosuke Morizawa, Ko Matsui

    Gordon Research Conference: Glial Biology 2019/03/03

  55. New Methods for Visualizing and Manipulating Glia International-presentation Invited

    Ko Matsui

    Gordon Research Conference: Glial Biology 2019/03/03

  56. 生体in vivoイメージング Invited

    松井 広

    第二回 ニコン顕微鏡イメージングフォーラム 2019/02/08

  57. Multimodal expressions and the control of brain information International-presentation Invited

    Ko Matsui

    The 2nd FRIS-TFC Joint Symposium 2019/01/21

  58. Cross talk between metabolism and information processing Invited

    Ko Matsui

    2018/12/01

  59. Glial control of neuronal information processing International-presentation Invited

    Ko Matsui

    TU-UCL Neuroscience meeting 2018/10/11

  60. Neural and glial basis of hyperexcitable circuits International-presentation Invited

    Mariko Onodera, Ko Matsui

    Heinrich-Heine-Universität Düsseldorf Seminar 2018/10/08

  61. Glial control of neuronal information processing International-presentation Invited

    Ko Matsui

    Heinrich-Heine-Universität Düsseldorf Seminar 2018/10/08

  62. Glial control of neuronal information processing International-presentation Invited

    Ko Matsui

    Japanese-German YoungGlia collaborative meeting for mutual research exchange 2018/10/01

  63. Malfunction of potassium extrusion as a major cause of chronic epilepsy International-presentation

    Mariko Onodera, Jan Meyer, Christine Rose, Ko Matsui

    Japanese-German YoungGlia collaborative meeting for mutual research exchange 2018/10/01

  64. グリア細胞の光操作で探る脳の機能と心の成り立ち Invited

    松井 広

    第3回 感性・身体性センシング技術分科会 2018/09/14

  65. Study of astrocytes in modulating anxiety-related behaviour via multifunctional fibers International-presentation

    Yuanyuan Guo, Ko Matsui

    2018/07/06

  66. Glial manipulation of fear and memory International-presentation Invited

    Ko Matsui

    2018/07/06

  67. オプトジェネティクスによる神経発振制御とグリア細胞の役割

    松井 広

    第15回てんかん包括医療東北研究会 2018/05/19

  68. 光操作による脳と心の機能連関の解明 Invited

    松井 広

    第86回 日本心身医学会 東北地方会 2018/02/24

  69. Glial manipulation of memory and mind International-presentation Invited

    Ko Matsui

    2018/02/13

  70. グリア細胞活動の光操作を通した脳病態制御 International-presentation

    松井 広

    ConBio2017 生命科学系学会合同年次大会 2017/12/06

  71. グリア細胞機能の光操作・光計測 Invited

    松井 広

    ダイナミックアライアンスG3公開シンポジウム 2017/11/28

  72. 脳とこころの光操作 -神経とグリアをつなぐ超回路の機能-

    松井 広

    第229回 生命科学フォーラム 2017/11/27

  73. 脳の多階層をまたがる信号の光遺伝学的解析 Invited

    松井 広

    生理学研究所研究会@東北「脳の階層的理解を目指して」 2017/11/24

  74. グリア細胞による神経系発振ステート制御機構の解明 Invited

    松井 広

    京都大学 大学院医学系研究科 てんかん・グリア・ミニシンポジウム 2017/11/20

  75. グリア・オプトジェネティクスによる脳と心の機能操作 Invited

    松井 広

    名古屋大学大学院医学系研究科・ニューロサイエンスコース講義 2017/09/29

  76. プラトンの洞窟からの脱出:オプトジェネティクスの光と影 Invited

    松井 広

    日本神経化学会 第10回若手育成セミナー 2017/09/07

  77. Optogenetics control of glial activity and animal behaviors International-presentation

    Ko Matsui

    International Society for Neurochemistry 2017/09/02

  78. グリア細胞の担う脳内情報処理 Invited

    松井 広

    山梨大学・先端脳科学特別教育プログラム・セミナー 2017/08/28

  79. チャネルを介したグリア伝達物質放出:脳情報処理の新制御機構の解明 Invited

    松井 広

    第2回 イオンチャネル研究会 ~チャネル七夕~ 2017/08/02

  80. Optogenetics for search of the mechanisms and treatment of disease International-presentation

    Ko Matsui

    Neuro Global Summer School 2017 2017/07/24

  81. 光刺激惹起性抗てんかん作用の獲得と制御

    松井 広

    第2回ルミノジェネティクス研究会 2017/06/27

  82. 脳と心の光操作 Invited

    松井 広

    鹿児島大学医学部医学科2年生「生理学系統講義・特別講義」 2017/06/09

  83. グリア機能の光操作と心の起源の探索 Invited

    松井 広

    鹿児島大学大学院医歯学総合研究科・大学院セミナー 2017/06/08

  84. 神経細胞間シナプス伝達機構とグリア修飾機能 Invited

    松井 広

    東京大学大学院医学系研究科・大学院講義「神経科学入門」 2017/05/16

  85. Functional engineering of astrocytes and mind Invited

    Ko Matsui

    2017/04/14

  86. グリア光抑制による脳神経細胞死防御

    松井 広

    日本解剖学会 2014/03/29

  87. Optogenetic relief of ischemic brain damage International-presentation

    Ko Matsui

    15th Conference of Peace through Mind Brain Science 2014/02/20

  88. 神経−グリアネットワークの機能と破綻

    松井 広

    生理学研究所研究会「グローバルネットワークによる脳情報処理」 2014/01/11

  89. Source and effect of glutamate liberate into the extracellular space International-presentation

    Ko Matsui

    Korea Institute of Science and Technology - Center for Funtional Connectomics Seminar 2013/12/18

  90. Proton triggered glial glutamate release underlies excitotoxicity upon ischemia International-presentation

    Ko Matsui

    JSPS Core-to-Core Program Symposium "Mechanisms of Synaptic Transmission" 2013/12/05

  91. Optogenetic glial alkalization relieves ischemic brain damage International-presentation

    K. BEPPU, T. SASAKI, K. F. TANAKA, A. YAMANAKA, Y. FUKAZAWA, R. SHIGEMOTO, K. MATSUI

    Society for Neuroscience 2013/11/12

  92. 脳と心の光操作

    松井 広

    第3回オプトジェネティクス講習会 2013/10/05

  93. Optogenetics for rescue International-presentation

    Ko Matsui

    国際会議 Optogenetics 2013 2013/09/27

  94. 低侵襲生体内グリア活動の可視化による神経からグリアへの信号伝達経路の解析

    松井 広

    新学術領域研究「メゾスコピック神経回路から探る脳の情報処理基盤」領域会議 2013/09/22

  95. 光遺伝学応用の新たな展開

    松井 広

    包括的脳科学研究推進支援ネットワーク・夏のワークショップ・リソース・技術開発支援拠点 「脳神経機能のプロービングと操作:開発の現状と応用」 2013/09/01

  96. Optogenetic control of glial cell activity International-presentation

    Ko Matsui

    XI European Meeting on Glial Cells in Health and Disease, Workshop I "Imaging glial activity" 2013/07/03

  97. Optogenetic analysis of the role of glial cells in cerebellar circuit International-presentation

    Ko Matsui

    日本神経科学会大会・サテライトシンポジウム「小脳の神経科学−分子生物学から認知科学まで」 2013/06/22

  98. 脳と行動の光操作

    松井 広

    日本神経科学会大会・ランチョンセミナー(オリンパス) 2013/06/21

  99. Unveiling brain intercellular communication with optoelectrophysiology and simulations International-presentation

    Ko Matsui

    理化学研究所BSIセミナー招待講演 2013/04/25

  100. Exploring the causal relationship between glial activity and mind International-presentation

    Ko Matsui

    日本生理学会大会・シンポジウム「神経回路におけるグリア細胞の新規機能」 2013/03/29

  101. Building of brain function through intercellular communication International-presentation

    Ko Matsui

    SNSS2013 2013/03/10

  102. 脳神経とグリアの二階層間情報伝達過程の解明

    松井 広

    自然科学研究機構プロジェクト「脳神経情報の階層的研究」 2013/03/05

  103. Optogenetic control of glia and mind International-presentation

    Ko Matsui

    国際高等研究所「ゲノム工学とイメージングサイエンスに基づく生命システム研究の新展開」 2013/02/22

Show all Show first 5

Research Projects 36

  1. 脳血管運動による脳機能亢進効果のメカニズム

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業

    Category: 基盤研究(B)(一般)

    Institution: 東北大学

    2025/04 - 2029/03

  2. 小脳が左右する社会性行動の調整原理の解明

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業

    Category: 学術変革領域研究(A)(公募研究)

    Institution: 東北大学

    2025/04 - 2028/03

  3. セロトニンによる視床下部ストレス回路調節機構-CRF-Venusマウスによる検討

    井樋 慶一, 松井 広

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業

    Category: 基盤研究(C)

    Institution: 東北福祉大学

    2024/04 - 2027/03

  4. PeT機構に基づくケージド化合物の生命機能解析・疾患治療研究への応用

    中川 秀彦, 長岡 泰司, 松井 広

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業

    Category: 基盤研究(B)

    Institution: 名古屋市立大学

    2023/04 - 2026/03

  5. グリア・神経ネットワークの統合による脳内エネルギー代謝機構

    田中 謙二, 松井 広

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 学術変革領域研究(A)

    Category: 学術変革領域研究(A)

    Institution: 慶應義塾大学

    2020/11/19 - 2025/03/31

    More details Close

    神経、グリア、血管がそれぞれの役割を果たして、脳の活動が維持される。2020年度は、神経活動を増幅させるメカニズムと、いきすぎた増幅を抑制するメカニズムについて、細胞レベルでの検討を行った。神経からアストロサイトへグルタミン酸が興奮を伝え、アストロサイトから神経へグルタミン酸を伝える連関によって増幅されることを明らかにした。次に、いきすぎた神経活動の一例として、てんかんを取り上げた。てんかんにおいて、アストロサイトの細胞内がアルカリ化すること、アルカリ化がアストロサイト同士のギャップ結合を抑制すること、アストロサイト間の結合抑制がてんかんを悪化させることを明らかにした。これらの神経グリア相互作用には、血管から十分なエネルギーが供給されることによって達成される。神経グリア相互作用を血流がどのように制御するかを明らかにする目的で、脳局所血流を操作する実験系を開発した。血管平滑筋もしくはペリサイトだけにチャネルロドプシンないし光活性化アデニル酸シクラーゼを発現するマウスを作成した。レーザードップラー法を用いた脳深部血流計測によって、光刺激後の血流変化は分単位であることを示した。造影剤を用いた機能的MRIによる血流計測によって、局所光刺激による血流変化の空間的広がりを調べたところ、光の強度と照射時間に応じた血流変化を確認した。以上の予備的検討によって、どの程度の光照射によって、どの程度の脳領域の血流を操作できるのかという今後のin vivo研究に必須となる情報を得ることが出来た。

  6. 末梢-中枢機能連関による脳内環境とメタ可塑性制御

    松井 広

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 学術変革領域研究(A)

    Category: 学術変革領域研究(A)

    Institution: 東北大学

    2023/04 - 2025/03

  7. オンライン/オフライン学習のホメオスタシス制御

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)

    Category: Grant-in-Aid for Scientific Research (B)

    Institution: Tohoku University

    2022/04 - 2025/03

  8. CRF受容体1および2遺伝子改変マウスによるCRFニューロン回路の同定と機能解析

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)

    Category: Grant-in-Aid for Scientific Research (C)

    Institution: Tohoku Fukushi University

    2021/04 - 2024/03

  9. 脳梗塞時に発生する脳回路ダイナミズムの解明と記憶増強への応用

    松井 広

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 新学術領域研究(研究領域提案型)

    Category: 新学術領域研究(研究領域提案型)

    Institution: 東北大学

    2020/11/19 - 2022/03/31

    More details Close

    脳梗塞後、1)生き残った梗塞部周辺(ペナンブラ)での神経回路の再編が生じ、失われた機能をペナンブラの神経細胞が肩代わりするようになることと、2)ペナンブラの外の無傷の領域での可塑性の亢進により、超可塑性が実現し、例えば、従来利き手でなかった左手で字がかけるようになるなど、日常生活を送るための機能補償がされることがある。どちらの場合も、脳の広範囲に可塑性の亢進が惹起されるが、この超可塑性の基礎メカニズムを明らかにすることで、効果的なリハビリへの応用が望める。梗塞初期には、酸素不足によるTCA回路の停止、および、乳酸の蓄積による代謝性アシドーシスが生じる。脳梗塞後、酸性化したバーグマングリア細胞からのグルタミン酸放出は、急性には、脳の破壊につながり、回復期においては、ペナンブラ、あるいは、遠く離れた部位にて、シナプス可塑性(LTD)が生じやすい状態(超可塑性もしくは易可塑性)を作ると考えられる。そこで、本研究では、Rose Bengal脳梗塞モデルを使い、慢性的な酸性化・乳酸供給が持続するかどうかを調べるため、自由行動下でのファイバーフォトメトリー法を開発・改良をした。また、小脳依存性の水平視機性眼球運動(HOKR)学習をひとつのモデルとして、グリア細胞をターゲットにした光操作による介入も試みた。研究の結果、脳梗塞による影響は時空的に複雑なダイナミズムを描くことが明らかになった。すなわち、梗塞部位から近位と遠位とで、異なるタイムコースで影響が波及することが示された。また、梗塞による障害と超可塑性は、時空間上で重なり合って発現するため、片方のみ効果を抽出することは困難であったが、グリア・オプトジェネティクスの実験等を重ねることで、今後、超可塑性の効果を引き出し、例えば、老齢マウスの記憶障害の治療を実現することも検討していきたい。

  10. Investigation of molecular mechanisms underlying cooperative construction of pre- and postsynaptic compartments by an originally developed ultrastructure correlation analysis

    Fukazawa Yugo

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research

    Category: Grant-in-Aid for Scientific Research (B)

    Institution: University of Fukui

    2019/04/01 - 2022/03/31

    More details Close

    The purpose of this study was to clarify the molecular mechanisms underlying the cooperative construction between pre- and postsynaptic structures and the common synaptic structural abnormalities among autism model mice, by an original analysis method that enables quantitative evaluation of the ultrastructure of the entire synaptic contact.We analyzed the synaptic structures of mice genetically modified for synaptic adhesion molecules and autism model mice. Our findings suggest that the lack of cooperative construction between pre- and postsynaptic structures is not a common ultrastructural anomaly in autism model mice. We will continue to analyze other gene-deficient mice and the differences in the interaction of wild-type NLG3 and R451C mutant NLG3 with Neurexin molecules for understanding the molecular mechanisms underlying the cooperative construction of pre- and postsynaptic structures.

  11. Analysis of brain information and pathological control by optical measurements and manipulations

    Matsui Ko

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research

    Category: Grant-in-Aid for Scientific Research (B)

    Institution: Tohoku University

    2019/04/01 - 2022/03/31

    More details Close

    The brain is composed of numerous networks, including neural, glial, vascular, and metabolic networks. Each network operates according to its own rules, but the signals that unite these networks are indispensable for us to act in a consistent manner as an individual. In terms of the complex networks in the brain, glial cells are the ones that unite all the networks in the brain. In this study, we developed a technique to measure the dynamics of intracellular biomolecules using novel fluorescent sensor proteins. By measuring the flow of biomolecules inside and outside the cell in a multimodal manner, we have conducted research to elucidate the mechanism of information processing in the brain from a new perspective.

  12. Osmotic signal as an integrating signal in the multi level network of the brain

    Matsui Ko

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Research (Exploratory)

    Category: Grant-in-Aid for Challenging Research (Exploratory)

    Institution: Tohoku University

    2018/06/29 - 2020/03/31

    More details Close

    Information in the brain is thought be encoded solely by the series of action potential firing of neurons. However, we have shown that glutamate is being released from glial cells and such glial actions strongly control neuronal signaling and ultimately affect behavior and learning in animals. Any type of signal that can be added and subtracted can be used as information unit. In this study, we hypothesized that osmotic signals in glial cells can have a strong influence on the brain function and such osmotic signals are actively used in the information processing in the brain. We have particularly focused on ionic channels that are opened and closed in response to osmotic changes and studied the transmitter release from these channels.

  13. 神経活動振動への介入法の開発と応用

    松井 広

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 新学術領域研究(研究領域提案型)

    Category: 新学術領域研究(研究領域提案型)

    Institution: 東北大学

    2018/04/01 - 2020/03/31

    More details Close

    脳の状態に応じて、神経細胞は周期的に発火し、多くの神経細胞がこの周期性に同期しながら発火する。生理的な神経発振は、例えば、記憶といった形で情報をコード化するのに役立つと考えられ、コントロールできないほどに発振が全般化すれば、てんかん発作につながる。本研究では、このような神経発振の意味を探るため、人為的に発振ステートを遷移させる実験的操作法を開発することを目的とした。具体的には、1)オプトジェネティクス(光遺伝学)による神経刺激を通して超長期可塑性を誘導する方法、2)脳内代謝回路の薬理学的操作によって神経伝達物質産生バランスを変化させる方法、3)グリア細胞活動の光操作によって脳内局所環境を変化させる方法を用いた。本研究では、数日に渡る神経細胞刺激によって超長期可塑性を誘導し、過興奮しやすいてんかん脳や、てんかん刺激に対して抵抗性のある抗てんかん脳を作り出すことに成功した。この研究を通して明らかになったのは、定常的な脳内アデノシンという抑制性神経伝達物質の多寡が、神経発振現象を強力に支配しているという事実であった。そこで、引き続き、生来の脳細胞において、神経伝達物質を産生する際に働く補酵素を余剰に投与することで、神経伝達物質のバランスを変更し、神経発振現象をコントロールする方法で、脳内代謝回路に薬理学的に介入し、てんかん発作を封じ込める方法の開発に取り組んだ。実験の結果、既にキンドリングにより発展したてんかん脳に抗てんかん作用を発揮させることに成功した例もあったが、個体ごとのばらつきが大きいことが示された。急性スライス標本を用いたグリア細胞の光操作では、グリアからの作用によって神経細胞の発振が抑制されることが明らかになった。生きている動物におけるてんかん発作を封じ込めるほどの威力は発揮できなかったが、神経情報処理に対する修飾作用は示唆された。

  14. 脳内局所環境因子の多変量計測・制御による記憶・情動解析

    松井 広

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 新学術領域研究(研究領域提案型)

    Category: 新学術領域研究(研究領域提案型)

    Institution: 東北大学

    2018/04/01 - 2020/03/31

    More details Close

    ひとつの脳であっても、その時々の脳内環境次第で、情報処理モードは大きく異なる。これらのステート間では、脳内回路(ワイヤリング)自体には何の違いもないはずだが、脳の情報処理の動態は全く異なる。本研究者は、これまで、定常的な伝達物質濃度の多寡、あるいは、乳酸等の代謝産物濃度の一過性の変動次第で、神経系の動作ががらりと変わることを示しており、この脳内局所環境を制御しているのは、神経細胞とは異なるグリア細胞であると考えている。そこで、本研究では、生きているマウス脳内に光ファイバーを刺し入れ、グリア細胞からの伝達物質放出を制御する因子としての細胞内pH、Ca2+を蛍光ライブ計測するとともに、グリア細胞・神経細胞の伝達物質産生能を握っている、乳酸・ピルビン酸・ATP等の代謝産物の流れを、新規開発のFRET蛍光分子を使ってモニターすることを目標とした。本研究において、それぞれの蛍光センサープローブを発現する遺伝子改変マウスを作製した。これらの動物を用いて、脳内神経活動の電気的活動および蛍光記録の多変量解析を行った。特に、睡眠・覚醒等の大きく異なる脳状態で上記光ファイバー・フォトメトリーを行ったところ、脳表面で見られる変化とは全く異なる変化が脳深部で起こっていることが明らかになった。脳表面での変化は、蛍光マクロズーム実体顕微鏡を用いたイメージング方法を新たに開発して観察したが、ファイバー・フォトメトリーでの計測結果が確認された。特に、グリア細胞のうちのアストロサイトと神経細胞とをつなぐ、代謝産物の流れが可視化されたことで、脳内エネルギー代謝が、睡眠・覚醒中にどのように変化するのか、その一端が示され、睡眠の役割そのものを明らかにする研究を開始できた。

  15. 脳内多階層ネットワーク間横断シグナルとしての浸透圧信号の機能解明 Competitive

    松井 広

    Offer Organization: 文部科学省

    System: 挑戦的研究 (萌芽)

    2018/04 - 2020/03

  16. 脳内局所環境因子の多変量計測・制御による記憶・情動解析 Competitive

    松井 広

    Offer Organization: 文部科学省

    System: 科学研究費補助金(新学術領域研究(研究領域提案型))「脳情報動態を規定する多領野連関と並列処理」

    2018/04 - 2020/03

  17. 神経活動振動への介入法の開発と応用 Competitive

    松井 広

    Offer Organization: 文部科学省

    System: 科学研究費補助金(新学術領域研究(研究領域提案型))「非線形発振現象を基盤としてヒューマンネイチャーの理解」

    2018/04 - 2020/03

  18. グリア細胞による神経系発振ステート制御機構の解明

    松井 広

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 新学術領域研究(研究領域提案型)

    Category: 新学術領域研究(研究領域提案型)

    Institution: 東北大学

    2016/06/30 - 2018/03/31

    More details Close

    神経細胞は、活動電位をもって情報をコード化するが、活動電位自体はどれも同じ形をしている。よって、波形そのものではなく、活動電位の発火のタイミング、頻度、間隔などが情報の主体であると考えられている。特に、神経細胞が周期的に発火し、さらに、多くの神経細胞がこの周期性に同期しながら発火する現象が注目を浴びている。このような神経活動の発振現象の意味を探るには、人為的に発振ステートを遷移させるという実験的操作が有効である。本研究者は、広範囲の神経活動の発振ステートを支配しているのは、グリア細胞であるという仮説を立てた。そこで、オプトジェネティクスを用いて、神経細胞やグリア細胞の活動を光操作し、発振を止めたり、発振周波数を変化させるなどに挑戦した。 本研究では、まず、神経細胞に光感受性分子ChR2を発現する遺伝子改変ラットを使い、海馬に連発光刺激を連日送ったところ、同じ光刺激に対して、より過剰な興奮を示すようになった。ところが、光刺激をさらに繰り返すと、今度は、次第に発作が生まれなくなり、神経発振を完全に局所に封じ込めることができるという結果が得られた。神経からグリアへの繰り返しの刺激によって、グリア細胞の性質に可塑的な変化が生じ、グリア細胞からアデノシンが定常的に放出されるようになり、それが神経発振を抑えていると考えられた。また、脳内アデノシンの定常量を計測するため、マイクロダイアリシス実験を行い、質量分析にかけたところ、確かに、アデノシン量の増大が確認された。また、神経細胞ではなく、グリア細胞そのものにChR2等の光感受性分子を発現させることで、グリア細胞活動を操作したところ、グリア光操作によって神経細胞の発火頻度が左右された。したがって、本研究では、グリア細胞が、神経系の発振をいかようにもコントロールできる強力な作用を有していることが示された。

  19. 光操作技術を用いた記憶定着におけるアストロサイトの役割の解明

    松井 広

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 新学術領域研究(研究領域提案型)

    Category: 新学術領域研究(研究領域提案型)

    Institution: 東北大学

    2016/04/01 - 2018/03/31

    More details Close

    これまでの研究では、グリア活動が暴走する虚血状態での病態モデルを研究し、グリア作用を強力に惹起する細胞内pHに注目してきた。虚血時には、アストロサイトの酸性化が引き金となって、DIDS感受性陰イオンチャンネルが開き、グルタミン酸が放出される。本研究では、病態時だけでなく、健常時の学習・記憶過程でも、程度の差こそあれ、基本的に同じ原理のグリア作用が稼働するという仮説を検証した。まずは、グリア細胞のうち、アストロサイトの細胞内のpHが、神経活動に応じて刻々と変化し、学習課題中のアストロサイトの状態次第で、神経信号の増幅作用が亢進されたり、抑制されたりしている可能性を調べた。具体的には、生きているマウス脳内に光ファイバーを挿入して、アストロサイト細胞内イオン濃度を計測した。この研究を進めるにあたって、細胞質内に赤色pH蛍光センサー、細胞膜に緑色pH蛍光センサーを発現する遺伝子改変マウスを開発し、学習課題中のアストロサイトの活動を計測した。また、アストロサイトに発現させたArchT光刺激をすると、アストロサイトが本来持っている、神経信号増幅作用が抑制されると考えられる。したがって、もし、この刺激で学習成績が落ちるとすれば、生来のアストロサイトには神経信号増幅作用があって、それによって記憶が定着するという仮説が支持される。急性スライス標本を用いて検証したところ、小脳運動学習の成立に必須のmGluR1の活性化は、確かに、アストロサイトArchT光刺激によって減弱することが確認された。

  20. Project to create international glial researcher network: mainly focusing on Japan-Germany research exchange

    IKENAKA Kazuhiro, ITO Kei, UEKI Takatoshi, OHKI Kenichi, KATO Takahiro, KANEMARU Kazunori, SHIMIZU Takeshi, TAKEBAYASHI Hirohide, TANAKA Kenji, HASHIOTO Kohichi, YAMAZAKI Yoshihiko, INOUE Kazuhide, OKABE Shigeo, OZAKI Norio, KANBA Shigenobu, KIRA Junichi, KOHSAKA Shinichi, FUKUYAMA Hidenao, BANNAI Hiroko, NAKASHIMA Kinichi, IMAI Hiroo, MATSUI Ko, TACHIKAWA Masanori, KAKEGAWA Wataru

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

    Category: Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

    Institution: National Institute for Physiological Sciences

    2015/11/06 - 2018/03/31

    More details Close

    We Glia Assembly communicated with Glial Heterogeneity (sponsored by DFG, program name SPP1757, project leader Dr. Frank Kirchhoff) and organized the international research consortium, called “YoungGlia”. The purpose of this framework is to stimulate mutual exchange visits of young researchers of glial research. The collaborative research between Japan and Germany will be carried out by the young researchers.The collaboration must be approved by the principle investigators on both sides but the original proposal and execution of the research itself must be done by the young researchers. According to the above basic concept, we selected 11 research pairs at 1st (FY2015) and 2nd (FY2016) YoungGlia and supported their international collaborations for 1-2 years. We organized 3rd YoungGlia (FY2017) and all funded pairs presented their achievements. In addition, at the 3rd YoungGlia, we invited Canadian and American groups and expanded our partnership beyond Japan-Germany communication.

  21. グリア細胞による神経系発振ステート制御機構の解明 Competitive

    松井 広

    Offer Organization: 文部科学省

    System: 科学研究費補助金(新学術領域研究(研究領域提案型))「非線形発振現象を基盤としてヒューマンネイチャーの理解」

    2016/04 - 2018/03

  22. 光操作技術を用いた記憶定着におけるアストロサイトの役割の解明 Competitive

    松井 広

    Offer Organization: 文部科学省

    System: 科学研究費補助金(新学術領域研究(研究領域提案型))「グリアアセンブリによる脳機能発現の制御と病態」

    2016/04 - 2018/03

  23. Optogenetically induced super long term plasticity

    MATSUI Ko, HARADA Harumi, SHIGEMOTO Ryuichi, SUHARA Yuki, KUBO Naoko, KWON Soojin

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Exploratory Research

    Category: Grant-in-Aid for Challenging Exploratory Research

    Institution: Tohoku University

    2015/04/01 - 2017/03/31

    More details Close

    Long term memory is the foundation of our own identity. However, little is known about the cell physiological change associated with long term memory. Using acute brain slices, synaptic plasticity has been well studied; however, changes occurring within 30 minutes to a few hours at most may be well different from what is happening after several hours and days. We have created an optogenetic model to study super long term changes in synaptic plasticity. Vermis region of the cerebellum was used for this study because it allows near non-invasive optical stimulation and neuronal activity monitoring in vivo. We aimed to understand the basic mechanisms underlying super long term plasticity.

  24. Glial influence on neuronal activity and behavior

    MATSUI Ko, BEPPU Kaoru

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (A)

    Category: Grant-in-Aid for Young Scientists (A)

    Institution: Tohoku University

    2013/04/01 - 2017/03/31

    More details Close

    We have generated transgenic mice that express, in astrocytes of the glial cell population, fluorescent proteins that are sensitive to changes in intracellular pH or calcium. Compared to methods using synthetic dyes, these proteins are specifically expressed in astrocytes. Therefore, using acute brain slice preparations, local changes in the fine processes of the cells can be readily identified. In addition, small cranial window was created and optical fiber was inserted to observe the intracellular ionic changes in vivo. These methods along with the methods to optical control intracellular ionic changes using ChR2 and ArchT, we would be able to understand how astrocytes function affect neuronal activity and animal behavior.

  25. 超長期可塑性の光制御と記憶形成メカニズムの解明 Competitive

    松井 広

    Offer Organization: 文部科学省

    System: 挑戦的萌芽研究

    2015/04 - 2017/03

  26. グリアの発する信号が神経活動・行動に及ぼす影響を探る Competitive

    松井 広

    Offer Organization: 文部科学省

    System: 科学研究補助金(若手研究(A))

    2013/04 - 2017/03

  27. グリア光操作による虚血性脳障害回避法の開発

    松井 広

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 新学術領域研究(研究領域提案型)

    Category: 新学術領域研究(研究領域提案型)

    Institution: 東北大学

    2014/04/01 - 2016/03/31

    More details Close

    脳への酸素と栄養の供給が滞る脳虚血時においては、細胞内アシドーシスや、グルタミン酸過剰放出による興奮性神経毒性が生じ、細胞死を誘導する代謝経路が活性化される。細胞死へと至るシグナル・カスケードの発端となるグルタミン酸の放出を止める手立ては考えられておらず、そもそもどの細胞が主要な放出源であるのかすら特定されていなかった。本研究では、脳虚血時にグルタミン酸が放出されるメカニズムを明らかにし、細胞内イオン濃度を光操作することで放出そのものを止め、虚血性脳障害を回避させる方法を編み出すことを目指した。本研究では、グリア細胞のうち、アストロサイトに光感受性分子ChR2を発現させた遺伝子改変動物を作製し、アストロサイトを光刺激することでこの細胞を特異的に酸性化させると、それだけが引き金となって、DIDS感受性陰イオンチャンネルが開き、グルタミン酸が放出されることを示した。また、脳虚血にともない、過剰なグルタミン酸が放出され、興奮性神経毒性により、脳細胞死が生じることが知られているが、アストロサイトに光感受性の水素イオンポンプArchTを発現させ、アストロサイト細胞内を光刺激によりアルカリ化すると、過剰なグルタミン酸放出が止まり、虚血性脳障害を防ぐことができることが示された。今後、虚血性脳障害を回避するには、アストロサイトの酸性化を止めるか、アストロサイトに発現するグルタミン酸透過性の陰イオンチャネルを止めるかのどちらかが重要な治療ターゲットとなりうると考えられる。また、アストロサイトの酸性化をコントロールするにあたっては、アストロサイト内の細胞局所において、どの程度のpH変化が認められるかを実測することが必要となる。そこで、pH感受性のある蛍光タンパク質を、アストロサイト特異的に発現する遺伝子改変マウスの作製を行い、現在、高精度な細胞内pH計測に挑戦している。

  28. グリア光操作による虚血性脳障害回避法の開発 Competitive

    松井 広

    Offer Organization: 文部科学省

    System: 科学研究費補助金(新学術領域研究(研究領域提案型))「グリアアセンブリによる脳機能発現の制御と病態」

    2014/04 - 2016/03

  29. 低侵襲生体内グリア活動の可視化による神経からグリアへの信号伝達経路の解析

    松井 広

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 新学術領域研究(研究領域提案型)

    Category: 新学術領域研究(研究領域提案型)

    Institution: 東北大学

    2013/04/01 - 2015/03/31

    More details Close

    本研究では、小脳および網膜標本を用いて、神経活動がどのようにして、グリアまで伝達されるのかを調べた。小脳プルキニエ細胞には、平行線維・登上線維が興奮性シナプスを形成しているが、このシナプスを取り囲むようにバーグマングリア細胞は微細突起を伸ばしている。本研究者は、平行・登上線維からバーグマングリア細胞に面した箇所で、異所的にグルタミン酸の放出が生じ、バーグマングリアのAMPA受容体を活性化することで、神経からグリアへのミリ秒単位の素早い信号伝達を可能にしていることを示してきた。引き続き、グリアには秒単位のゆっくりとした応答が起こるが、今回、これは神経から放出されたATPに対する反応であることが示された。同様に、網膜のグリア細胞、ミューラー細胞からもATPに対するCa応答が記録された。 このように、これまで、神経刺激によって惹起されるグリア細胞の反応を主にCa応答という形で現れる。そこで、Caに応じてFRET現象が生じて蛍光が変化するタンパク質を、グリア細胞特異的に発現する遺伝子改変マウスを作製し、低侵襲でのCaイメージングが可能となった。この動物を開発する段階での研究に参加し、その後、共同研究者らは、できてきた動物を使って生体内でのグリア細胞の微細突起で生じるCa応答を記録することに成功した。 また、最近の我々の研究により、グリア細胞内のCaだけではなく、pHが、グリア細胞機能にとって重要であることが分かってきた。しかし、生理的な条件下で、どの程度のpH変化が見られるのかが明らかでない。そこで、上と同様の仕組みを使って、グリア細胞内に特異的にpH感受性の蛍光タンパク質を発現するマウスを作製することも行った。過剰な神経活動にともなって放出されるグルタミン酸を回収する際には、グリア細胞内が酸性化される可能性がある。そこで、てんかんなどの過度な神経活動が生じる際の、グリア細胞内pHを計測することに挑戦している。

  30. 低侵襲生体内グリア活動の可視化による神経からグリアへの信号伝達経路の解析 Competitive

    松井 広

    Offer Organization: 文部科学省

    System: 科学研究費補助金(新学術領域研究(研究領域提案型))「メゾスコピック神経回路から探る脳の情報処理基盤」

    2013/04 - 2015/03

  31. Development of animal model enabling the manipulation of intracellular Ca level

    TANAKA Kenji, MATSUI Ko

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Exploratory Research

    Category: Grant-in-Aid for Challenging Exploratory Research

    Institution: Keio University

    2012/04/01 - 2014/03/31

    More details Close

    To achieve the manipulation of intracellular Ca2+ levels in the cell-type specific manner, we established the transgenic animal in which melanopsin (human OPN4 gene) was expressed in cell-type specific manner. We generated tetO-melanopsin transgenic mice and crossed with neuronal tTA (orexin-tTA) mice. Orexin neurons expressed enough amount of melanopsin to evoke cell firing, demonstrating the successful manipulation. In case of crossing with glial tTA mice, there was no induction. To improve melanopsin induction in glial cells, we generated STOP tetO-melanopsin knockin mice using mouse melanopsin locus. Unlike previous tetO knockin mice, none of glial tTA line induced melanopsin yet. We were able to express sufficient amount of melanopsin in neuronal cells and manipulate cell function by illumination, however, we failed to express melanopsin in glial cells.

  32. 光操作法による初期視覚回路特性の抽出と書き換えに伴う構造変化の解析 Competitive

    松井 広

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 新学術領域研究(研究領域提案型)

    Category: 新学術領域研究(研究領域提案型)

    Institution: 生理学研究所

    2011/04/01 - 2013/03/31

    More details Close

    神経細胞間をつなぐシナプスにおける信号伝達効率を調整することで、情報の流れ方を変え、既存の配線を使いつつも、環境への適応・学習・記憶といった脳機能が達成されていると考えられる。ところが、脳内にどんな回路が実装されていて、個々のシナプスの可塑性がどのように進行するのかに関して、ほとんど検証が進んでいない。本研究では、まず、電気生理学・形態学・シミュレーションの全ての面で精緻な解析のしやすいcalyx of Heldシナプスを対象とした。シナプスにおける信号伝達特性を左右する重要な因子として、シナプス間隙へと放出されるグルタミン酸分子の数、および、細胞間隙におけるグルタミン酸の拡散係数が挙げられるが、この二つのパラメーターを求めることで、シナプス間隙におけるグルタミン酸の振る舞いを完全に表現することに成功した。続いて、網膜-外側膝状体-皮質へと伝わる初期視覚過程に関わる、メゾスコピック回路を対象とし、その特性を抽出することに挑戦。視神経線維一本を立て続けに刺激すると、応答が急速に抑制されることを見出した。細胞間隙における伝達物質拡散のシミュレーションを通して、シナプスから溢れ出た伝達物質が近隣のシナプスの受容体を脱感作させることで応答が抑制されるということが明らかになった。続いて、特定の脳細胞の活動を光操作することで、メゾ回路の書き換えを促し、回路特性の変化を生理学的に解析するという課題に取り組んだ。このために、神経やグリア細胞の活動を特異的に光で制御する方法を開発した。当初、目標としていた初期視覚回路の書き換えには成功しなかったが、光操作技術を用い、各種脳細胞間の信号伝達を操作することを通して、小脳メゾ回路におけるシナプス可塑性を誘導することに成功。個々の細胞間相互作用における変化が、メゾ回路の動作変更を誘導し、眼球運動学習といった個体全体の機能へ影響する様が評価できた。

  33. Properties of intercellular signal transmission determined by the fine structure of synapses Competitive

    MATSUI Ko, KAMASAWA Naomi

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)

    Category: Grant-in-Aid for Scientific Research (C)

    Institution: National Institute for Physiological Sciences

    2010 - 2012

    More details Close

    There exists a gap between cells and neurons communicate with each other by crossing signals through this gap. In this study, we estimated the amount of transmitter molecules packed within a synaptic vesicle and the speed of diffusion of these molecules in the extracellular space. Using these estimates, we evaluated the amount of transmitter that would spillover from a synapse and the effect of these transmitters on the neighboring synapses. The visual relay synapse has specific structure that promotes such intersynaptic interactions, and we found that filtering of visual information is accomplished through these interactions.

  34. 神経活動の光製御による脳機能マッピング法の開発 Competitive

    松井 広

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 萌芽研究

    Category: 萌芽研究

    Institution: 生理学研究所

    2007 - 2007

    More details Close

    本研究の目的は、神経活動を光で制御する方法を開発し、この方法を利用して、動物の認知機能が脳内でどのように実装されているのかを解明することである。本研究では、新規に発見された光感受性の膜タンパク質channel-rhodopsinを活用した。この膜タンパク質に青色の光を照射すると、細胞膜に非選択的に陽イオンを通すチャンネルを開けることができ、この膜タンパク質を発現している細胞を瞬間的に興奮させることができる。本研究では、channel-rhodopsinを一部の神経細胞に発現するトランスジェニック・ラットの作製に成功した。続いて、この動物から作製した脳スライス標本を用いて、神経細胞を興奮させるのに必要十分な光刺激条件を絞り込んでいった。実験の結果、channel-rhodopsin発現細胞を興奮させるには、細胞体等の比較的膜面積の広い領域を刺激するのが効率良いことが分かった。また、光刺激によってchannel-rhodopsin発現細胞から生じる伝達物質放出には、温度依存性があり、生理的体温に近い温度で放出を起こさせるには、非常に強い強度の光刺激が必要となり、生体内(in vivo)で、脳に光刺激を送り込む場合には課題になることが明らかになった。本研究では、スライス標本で光刺激を用いたシナプス可塑性の誘導も試みた。通常の電気刺激では、刺激された神経線維と刺激されなかった神経線維を区別することが困難だが、本方式の場合は、channel-rhodopsinの有無で両者を区別できる。実験に使用した標本を固定した後、電子顕微鏡観察下でも、刺激を受けた神経線維を同定できるかどうかを検討している。

  35. シナプスーグリア複合環境の動的変化による情報伝達効率の時空間的制御 Competitive

    松井 広

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 若手研究(A)

    Category: 若手研究(A)

    Institution: 生理学研究所

    2006 - 2007

    More details Close

    本研究では、シナプスーグリア複合環境が、どのように刻々と変化するのかを調べ、この空間環境変化が、伝達物質濃度の時空間特性にどう影響し、シナプス伝達にどう作用するのか調べることを目的としている。昨年度の二光子イメージングを用いた研究によって、小脳のバーグマン・グリア細胞の形態が、分単位で刻々と変化することが明らかになった。この形態変化を誘導する信号の候補として、バーグマン・グリア細胞のCa^<2+>透過型AMPA受容体とATP受容体が考えられる。本年度の研究では、まず、これらの受容体の活性化を介した細胞内Ca^<2+>濃度上昇が、細胞のどの位置で生じるのかを調べた。その結果、AMPA受容体入力によるCa^<2+>上昇は、グリア細胞の微細突起の先端に限局しているのに対し、ATP受容体入力によるCa^<2+>上昇は、グリア細胞全体に伝播することが明らかになった。AMPA受容体は、平行線維や登上線維からのグルタミン酸放出によって活性化されることは明らかにされているが、ATPはどこから放出されるのか明らかになっていない。ATP放出元が小脳介在神経細胞であることが示唆されているので、これを確定するための実験を進めている。形態変化に関しては、AMPA受容体の活性化を薬物によって6時間程度止めたところ、グリア細胞で記録されるグルタミン酸応答の立ち上がりが遅くなることが明らかになり、平行線維とグリア細胞の微細突起の間の距離が広がったことが示唆された。二光子イメージングでは解像度が足りず、この点を確認できなかったので、電子顕微鏡を用いた連続切片観察を試みている。同様にして、ATP受容体の形態変化に対する影響に関しても解析を試みている。また形態変化に伴い、細胞外空間における伝達物質拡散がどのように影響を受け、シナプス後細胞の受容体活性化にどのような影響を与えるのかを解析するためのシミュレーションも遂行した。

  36. 網膜神経細胞間のシナプス伝達とその視覚情報処理に対する役割

    松井 広

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業

    Category: 特別研究員奨励費

    Institution: 東京大学

    1998 - 2000

Show all Show first 5

Teaching Experience 30

  1. 全学教育科目:フロンティア科目「生命科学研究の最前線」 Tohoku University

  2. 全学教育科目:生命科学A(非生物系)- 第12回「エネルギー生産(ミトコンドリアと葉緑体)」 Tohoku University

  3. 国際共同大学院大学 Neuro Global Program アカデミック英語集中講義 Tohoku University

  4. 大学院医学系研究科・基礎医学III Tohoku University

  5. 医学部医学科:1年次「研究室取材訪問」 Tohoku University

  6. 大学院生命科学研究科:先端脳生命統御科学特論II Tohoku University

  7. 大学院生命科学研究科:共通科目C「超回路脳機能概論」 Tohoku University

  8. 大学院:細胞生物学合同講義プログラム 「脳細胞間の信号伝達」 Tohoku University

  9. 医学部医学科:3年次「基礎医学修練」 Tohoku University

  10. システム視覚科学研究センターセミナー Ritsumeikan University

  11. 大学院医学系研究科:神経科学ワークショップII Tohoku University

  12. 大学院医学系研究科:神経科学ワークショップI Tohoku University

  13. 大学院医学系研究科:神経科学セミナー Tohoku University

  14. 医学研究の基礎を語る集い Jikei University

  15. 大学院生命融合科学教育部特別セミナー University of Toyama

  16. 医学系研究科・ニューロサイエンスコース講義 Nagoya University

  17. 先端脳科学特別教育プログラム・セミナー University of Yamanashi

  18. 医歯学総合研究科・大学院セミナー Kagoshima University

  19. 生理学系統講義・特別講義 Kagoshima University

  20. 医学系研究科・大学院講義「神経科学入門」 The University of Tokyo

  21. 医学部医学科:1年次「医学基礎生物学」 Tohoku University

  22. 大学院特別講義 Tokyo Medical and Dental University

  23. 医学部医学科2年生講義 University of Fukui

  24. 医学系研究科・大学院セミナー University of Fukui

  25. 視覚科学統合研究センターセミナー Ritsumeikan University

  26. 医学部医学科:4年次「臨床実習前特別講義」 Tohoku University

  27. 医学系研究科「研究推進・研究倫理ゼミ」 Tohoku University

  28. 医学系研究科「科研費説明会」 Tohoku University

  29. 文学部心理学科「動物行動学実習」 東京大学

  30. 大学院講義「神経系の細胞構築と回路構成」-網膜と視覚路 総合研究大学院大学

Show all Show first 5

Media Coverage 48

  1. 東北大、てんかん発作による代謝的負荷をかけた際のマウス神経細胞内ATPとアストロサイト内ピルビン酸と血流量の変動を解析

    日本経済新聞 日本経済新聞

    2025/03/24

  2. How can we erase long-term fear memories?

    中国 Hunan TV(湖南衛視) 科学番組 News and Science "Seeking Truth in News"(新闻大求真)

    2024/12/11

    Type: TV or radio program

  3. グリア細胞、長期記憶に影響 酸性・塩基性操作で変化 東北大が実証

    日刊工業新聞 日刊工業新聞

    2024/11/14

  4. 東北大、記憶の運命はグリア細胞が握ることを解明

    日本経済新聞 日本経済新聞

    2024/11/11

    Type: Newspaper, magazine

  5. 第55回記念 EPLS Ⅳ-2024 春季32回 仙台てんかん医学市民講座Ⅳ

    YouTube配信 仙台てんかんTUBE

    2024/06/08

  6. てんかんへの理解を深めて 6月8日・仙台で市民講座

    河北新報 河北新報

    2024/06/06

    Type: Newspaper, magazine

  7. 【科学誌掲載】てんかん発作のきっかけ発見、神経支援細胞が関与か 東北大

    ライブドア ライブドアニュース

    2024/05/28

    Type: Internet

  8. 視覚の刺激で脳の血管鍛えられる可能性 東北大学

    NHK NHKニュース

    2024/05/14

    Type: TV or radio program

  9. 脳内血管鍛えて血流改善 マウス視覚刺激で判明

    科学新聞 科学新聞

    2024/05/10

  10. てんかん様神経発振にグリア細胞が作用 東北大が実証、新たな治療薬に道

    日刊工業新聞 日刊工業新聞

    2024/05/10

    Type: Newspaper, magazine

  11. 東北大、無垢の頭蓋骨越しに脳内の蛍光を計測する方法などを用いて脳内の血管運動を観察する方法を開発

    日本経済新聞 日本経済新聞

    2024/04/26

    Type: Newspaper, magazine

  12. 脳細胞「アストロサイト」、てんかん発作の引き金に 東北大グループ発表

    河北新報 河北新報

    2024/04/20

    Type: Newspaper, magazine

  13. 東北大、てんかん様神経発振を引き起こすグリア細胞の作用を発見

    日本経済新聞 日本経済新聞

    2024/04/19

    Type: Newspaper, magazine

  14. 朝日新聞 ビー玉を見たマウスが抱く不安感 その時、脳の中で起きている変化は Myself

    2024/03

    Type: Newspaper, magazine

  15. 心とは何か?光と電気と電脳で追究する最先端脳科学!

    Japan Bioindustry Association (JBA)

    2024/03

    Type: Internet

  16. 科学新聞 説明のつかない不安感 脳の手綱核アストロサイトが影響

    2024/02

    Type: Newspaper, magazine

  17. NHKヒューマニエンス 「"記憶" 未来を切り拓く源泉」 Myself

    2024/01

    Type: TV or radio program

  18. 日本経済新聞 東北大、小脳グリア細胞が攻撃行動制御に果たす役割を解明 Myself

    2023/12

    Type: Newspaper, magazine

  19. 科学新聞 学習効果形成に2つの経路 グリア細胞が関与 Myself

    2023/07

    Type: Newspaper, magazine

  20. NHKヒューマニエンス「"生体電気" 電気仕掛けのココロとカラダ」 Myself

    2023/07

    Type: TV or radio program

  21. 日刊工業新聞 東北大、瞬時的学習・じわじわ学習 過程の独立実証 Myself

    2023/06

    Type: Newspaper, magazine

  22. レム睡眠時、てんかん指標細胞が酸性化 東北大院グループ、英科学誌に発表

    Yahoo! ニュース

    2023/03/21

    Type: Internet

  23. レム睡眠時、てんかん指標細胞が酸性化 東北大院グループ、英科学誌に発表

    河北新報

    2023/03/21

    Type: Newspaper, magazine

  24. グリア細胞の酸性化がレム睡眠を誘導、東北大

    科学新聞

    2023/03/17

    Type: Newspaper, magazine

  25. レム睡眠の前、グリア細胞が酸性化 てんかん診断や治療につながる可能性

    Yahoo! ニュース

    2023/03/10

    Type: Internet

  26. レム睡眠の前、グリア細胞が酸性化 てんかん診断や治療につながる可能性

    JST Science Portal

    2023/03/10

    Type: Internet

  27. 経営ひと言/東北大学・松井広教授「脳研究に新機軸」

    日刊工業新聞

    2023/03/09

    Type: Newspaper, magazine

  28. 東北大、グリア細胞刺激でレム睡眠誘導 てんかん診断指標に

    日刊工業新聞

    2023/03/07

    Type: Newspaper, magazine

  29. 東北大、視床下部グリア細胞が酸性化することを発見

    日本経済新聞 日本経済新聞

    2023/03/03

    Type: Newspaper, magazine

  30. Acid glia in REM sleep: Stronger acid response in epileptic mice

    AAAS EurekAlert!

    2023/03/03

    Type: Internet

  31. てんかん発作、脳内グリア細胞のpH変化 東北大が光ファイバーで計測

    日刊工業新聞

    2022/11/28

    Type: Newspaper, magazine

  32. てんかん発症に脳内「グリア細胞」が役割 東北大院研究グループ発表 新治療法に期待

    河北新報

    2022/11/26

    Type: Newspaper, magazine

  33. 東北大、脳内の局所環境情報を光ファイバーで読み出す新技術を開発してんかん増悪にともなうグリア細胞の酸性化を解明

    日本経済新聞

    2022/11/25

    Type: Newspaper, magazine

  34. Optically analyzing local brain environment: Astrocytes' acid response in epileptic mice

    EurekAlert!

    2022/11/25

    Type: Internet

  35. シナプス食べて脳を最適化 グリア細胞が学習効果を左右 東北大が解明

    科学新聞

    2022/11/11

    Type: Newspaper, magazine

  36. 記憶の定着、脳でシナプス食べる細胞が促す 東北大

    日本経済新聞

    2022/11/09

    Type: Newspaper, magazine

  37. Nibbling synapses: Glial cells eating of synapses may enhance learning and memory

    EurekAlert!

    2022/11/02

    Type: Internet

  38. Harnessing the brain's plasticity to acquire epilepsy resilience

    EurekAlert!

    2022/01/17

    Type: Internet

  39. 脳に内在する柔軟性を活性化させる てんかんレジリエンス機構の解明

    日本の研究.com

    2022/01/13

    Type: Internet

  40. 東北大、脳に内在する柔軟性を活性化させるてんかんレジリエンス機構を解明

    日本経済新聞

    2022/01/13

    Type: Newspaper, magazine

  41. NHK「ヒューマニエンス 40億年のたくらみ」 "天才"ひらめきのミステリー

    NHK 「ヒューマニエンス 40億年のたくらみ」

    2021/06/03

    Type: TV or radio program

  42. Acute breakdown of the glial network in epilepsy

    EurekAlert!

    2021/03/01

    Type: Internet

  43. Signal coupling between neuron-glia super-network may lead to improved memory formation

    EurekAlert!

    2021/02/24

    Type: Internet

  44. 脳の情報処理は神経細胞とグリア細胞の二層構造で行わている、東北大が確認

    TECH+ マイナビ

    2021/02/18

    Type: Internet

  45. 東北大、グリアの超回路相互作用を解明

    日本経済新聞

    2021/02/17

    Type: Newspaper, magazine

  46. てんかん重篤化に脳アストロサイトの可塑的機能変化が関連-東北大ほか

    医療NEWS QLife Pro

    2021/02/01

    Type: Internet

  47. 東北大、脳内グリア細胞の一種であるアストロサイトの細胞機能の可塑性がてんかんの重篤化につながることを発見

    日本経済新聞

    2021/01/29

    Type: Newspaper, magazine

  48. 脳内に「心のありか」?

    読売新聞

    2019/02/27

    Type: Newspaper, magazine

Show all Show first 5