Details of the Researcher

PHOTO

Minako Ueda
Section
Graduate School of Life Sciences
Job title
Professor
Degree
  • 修士(理学)(京都大学)

  • 博士(理学)(京都大学)

Research History 8

  • 2020/10 - Present
    Tohoku University Graduate School of Life Sciences Department of Ecological Developmental Adaptability Life Sciences

  • 2021/04 - 2026/03
    サントリー生命科学財団 SunRiSE フェロー

  • 2013/04 - 2020/09
    Nagoya University Institute of Transformative Bio-Molecules

  • 2010/10 - 2013/03
    Nara Institute of Science and Technology

  • 2008/04 - 2010/09
    Graduate School of Science, Nagoya University Division of Biological Science JSPS fellow (PD)

  • 2007/04 - 2008/03
    Institute of Biology III, University of Freiburg Postdoctoral fellow

  • 2005/04 - 2007/03
    Institute of Biology III, University of Freiburg JSPS fellow

  • 2002/04 - 2005/03
    Graduate School of Science, Kyoto University Department of Botany JSPS fellow (DC1)

Show all Show first 5

Education 3

  • Kyoto University Graduate School of Science Department of Botany

    2002/04 - 2005/03

  • Kyoto University Graduate School of Science Department of Botany

    2000/04 - 2002/03

  • Kyoto University Faculty of Science

    1996/04 - 2000/03

Professional Memberships 3

  • International Association of Sexual Plant Reproduction Research

  • The Japanese Society of Plant Physiologists

  • The Botanical Society of Japan

Research Interests 3

  • intracellular dynamics

  • axis formation

  • plant embryogenesis

Research Areas 1

  • Life sciences / Developmental biology /

Awards 4

  1. JSPS PRIZE

    2022/12 Japan Society for the Promotion of Science Spatiotemporal Dynamics and Molecular Mechanisms of Plant Morphogenesis Initiated by Fertilization

  2. 日本植物生理学会奨励賞

    2022/03 日本植物生理学会 植物胚における体軸形成機構

  3. ITbM Research Award

    2013/10 ITbM Research 動物生物学者および合成化学者との融合研究「Discovery of new molecules that control the cell cycle; Understanding the mechanism of animal and plant」

  4. 日本植物形態学会奨励賞

    2011/09

Papers 35

  1. Deep learning-based cytoskeleton segmentation for accurate high-throughput measurement of cytoskeleton density

    Ryota Horiuchi, Asuka Kamimura, Yuga Hanaki, Hikari Matsumoto, Minako Ueda, Takumi Higaki

    Protoplasma 2024/12/18

    DOI: 10.1007/s00709-024-02019-9  

  2. HD-ZIP IV genes are essential for embryo initial cell polarization and the radial axis formation in Arabidopsis. International-journal

    Sayuri Tanaka, Yuuki Matsushita, Yuga Hanaki, Takumi Higaki, Naoya Kamamoto, Katsuyoshi Matsushita, Tetsuya Higashiyama, Koichi Fujimoto, Minako Ueda

    Current biology : CB 2024/09/15

    DOI: 10.1016/j.cub.2024.08.038  

    More details Close

    Plants develop along apical-basal and radial axes. In Arabidopsis thaliana, the radial axis becomes evident when the cells of the 8-cell proembryo divide periclinally, forming inner and outer cell layers. Although changes in cell polarity or morphology likely precede this oriented cell division, the initial events and the factors regulating radial axis formation remain elusive. Here, we report that three transcription factors belonging to the class IV homeodomain-leucine zipper (HD-ZIP IV) family redundantly regulate radial pattern formation: HOMEODOMAIN GLABROUS11 (HDG11), HDG12, and PROTODERMAL FACTOR2 (PDF2). The hdg11 hdg12 pdf2 triple mutant failed to undergo periclinal division at the 8-cell stage and cell differentiation along the radial axis. Live-cell imaging revealed that the mutant defect is already evident in the behavior of the embryo's initial cell (apical cell), which is generated by zygote division. In the wild type, the apical cell grows longitudinally and then radially, and its nucleus remains at the bottom of the cell, where the vertical cell plate emerges. By contrast, the mutant apical cell elongates longitudinally, and its nucleus releases from its basal position, resulting in a transverse division. Computer simulations based on the live-cell imaging data confirmed the importance of the geometric rule (the minimal plane principle and nucleus-passing principle) in determining the cell division plane. We propose that HDG11, HDG12, and PDF2 promote apical cell polarization, i.e., radial cell growth and basal nuclear retention, and set proper radial axis formation during embryogenesis.

  3. Polarity establishment in the plant zygote at a glance. International-journal

    Hikari Matsumoto, Minako Ueda

    Journal of cell science 137 (5) 2024/03/01

    DOI: 10.1242/jcs.261809  

    More details Close

    The complex structures of multicellular organisms originate from a unicellular zygote. In most angiosperms, including Arabidopsis thaliana, the zygote is distinctly polar and divides asymmetrically to produce an apical cell, which generates the aboveground part of the plant body, and a basal cell, which generates the root tip and extraembryonic suspensor. Thus, zygote polarity is pivotal for establishing the apical-basal axis running from the shoot apex to the root tip of the plant body. The molecular mechanisms and spatiotemporal dynamics behind zygote polarization remain elusive. However, advances in live-cell imaging of plant zygotes have recently made significant insights possible. In this Cell Science at a Glance article and the accompanying poster, we summarize our understanding of the early steps in apical-basal axis formation in Arabidopsis, with a focus on de novo transcriptional activation after fertilization and the intracellular dynamics leading to the first asymmetric division of the zygote.

  4. A viscoelastic-plastic deformation model of hemisphere-like tip growth in Arabidopsis zygotes. International-journal

    Zichen Kang, Tomonobu Nonoyama, Yukitaka Ishimoto, Hikari Matsumoto, Sakumi Nakagawa, Minako Ueda, Satoru Tsugawa

    Quantitative plant biology 5 e13 2024

    DOI: 10.1017/qpb.2024.13  

    More details Close

    Plant zygote cells exhibit tip growth, producing a hemisphere-like tip. To understand how this hemisphere-like tip shape is formed, we revisited a viscoelastic-plastic deformation model that enabled us to simultaneously evaluate the shape, stress and strain of Arabidopsis (Arabidopsis thaliana) zygote cells undergoing tip growth. Altering the spatial distribution of cell wall extensibility revealed that cosine-type distribution and growth in a normal direction to the surface create a stable hemisphere-like tip shape. Assuming these as constraints for cell elongation, we determined the best-fitting parameters for turgor pressure and wall extensibility to computationally reconstruct an elongating zygote that retained its hemisphere-like shape using only cell contour data, leading to the formulation of non-dimensional growth parameters. Our computational results demonstrate the different morphologies in elongating zygotes through effective non-dimensional parameters.

  5. Comprehensive and quantitative analysis of intracellular structure polarization at the apical–basal axis in elongating Arabidopsis zygotes

    Yukiko Hiromoto, Naoki Minamino, Suzuka Kikuchi, Yusuke Kimata, Hikari Matsumoto, Sakumi Nakagawa, Minako Ueda, Takumi Higaki

    Scientific Reports 13 (1) 2023/12/18

    Publisher: Springer Science and Business Media LLC

    DOI: 10.1038/s41598-023-50020-8  

    eISSN: 2045-2322

    More details Close

    Abstract A comprehensive and quantitative evaluation of multiple intracellular structures or proteins is a promising approach to provide a deeper understanding of and new insights into cellular polarity. In this study, we developed an image analysis pipeline to obtain intensity profiles of fluorescent probes along the apical–basal axis in elongating Arabidopsis thaliana zygotes based on two-photon live-cell imaging data. This technique showed the intracellular distribution of actin filaments, mitochondria, microtubules, and vacuolar membranes along the apical–basal axis in elongating zygotes from the onset of cell elongation to just before asymmetric cell division. Hierarchical cluster analysis of the quantitative data on intracellular distribution revealed that the zygote may be compartmentalized into two parts, with a boundary located 43.6% from the cell tip, immediately after fertilization. To explore the biological significance of this compartmentalization, we examined the positions of the asymmetric cell divisions from the dataset used in this distribution analysis. We found that the cell division plane was reproducibly inserted 20.5% from the cell tip. This position corresponded well with the midpoint of the compartmentalized apical region, suggesting a potential relationship between the zygote compartmentalization, which begins with cell elongation, and the position of the asymmetric cell division.

  6. Coordinate Normalization of Live-Cell Imaging Data Reveals Growth Dynamics of the Arabidopsis Zygote Peer-reviewed

    Zichen Kang, Hikari Matsumoto, Tomonobu Nonoyama, Sakumi Nakagawa, Yukitaka Ishimoto, Satoru Tsugawa, Minako Ueda

    Plant and Cell Physiology 2023/03/20

    Publisher: Oxford University Press (OUP)

    DOI: 10.1093/pcp/pcad020  

    ISSN: 0032-0781

    eISSN: 1471-9053

    More details Close

    Abstract Polarization of the zygote defines the body axis during plant development. In Arabidopsis (Arabidopsis thaliana), the zygote becomes polarized and elongates in the longitudinal direction, ultimately forming the apical–basal axis of the mature plant. Despite its importance, the mechanism for this elongation remains poorly understood. Based on live-cell imaging of the zygote, we developed new image analysis methods, referred to as coordinate normalization, that appropriately fix and align positions in an image, preventing fluctuation across a temporal sequence of images. Using these methods, we discovered that the zygote elongates only at its apical tip region, similar to tip-growing cells such as pollen tubes and root hairs. We also investigated the spatiotemporal dynamics of the apical tip contour of the zygote and observed that the zygote tip retains its isotropic, hemispherical apical shape during cell elongation. By looking at the elliptical fitting of the contour over time, we further discovered that the apical cell tip becomes thinner at first and then thickens, with a transient increase in growth speed that is followed by the first cell division. We performed the same series of analyses using root hairs and established that the hemispherical tip shape and the changes in growth rate associated with changes in tip size are both specific to the zygote. In summary, the Arabidopsis zygote undergoes directional elongation as a tip-growing cell, but its tip retains an unusual isotropic shape, and the manner of growth changes with the developmental stage.

  7. Novel inhibitors of microtubule organization and phragmoplast formation in diverse plant species Peer-reviewed

    Yusuke Kimata, Moé Yamada, Takashi Murata, Keiko Kuwata, Ayato Sato, Takamasa Suzuki, Daisuke Kurihara, Mitsuyasu Hasebe, Tetsuya Higashiyama, Minako Ueda

    Life Science Alliance 6 (5) e202201657-e202201657 2023/02/27

    Publisher: Life Science Alliance, LLC

    DOI: 10.26508/lsa.202201657  

    eISSN: 2575-1077

    More details Close

    Cell division is essential for development and involves spindle assembly, chromosome separation, and cytokinesis. In plants, the genetic tools for controlling the events in cell division at the desired time are limited and ineffective owing to high redundancy and lethality. Therefore, we screened cell division–affecting compounds inArabidopsis thalianazygotes, whose cell division is traceable without time-lapse observations. We then determined the target events of the identified compounds using live-cell imaging of tobacco BY-2 cells. Subsequently, we isolated two compounds, PD-180970 and PP2, neither of which caused lethal damage. PD-180970 disrupted microtubule (MT) organization and, thus, nuclear separation, and PP2 blocked phragmoplast formation and impaired cytokinesis. Phosphoproteomic analysis showed that these compounds reduced the phosphorylation of diverse proteins, including MT-associated proteins (MAP70) and class II Kinesin-12. Moreover, these compounds were effective in multiple plant species, such as cucumber (Cucumis sativus) and moss (Physcomitrium patens). These properties make PD-180970 and PP2 useful tools for transiently controlling plant cell division at key manipulation nodes conserved across diverse plant species.

  8. Behavior of Male Gamete Fusogen GCS1/HAP2 and the Regulation in Arabidopsis Double Fertilization Peer-reviewed

    Yuka Shiba, Taro Takahashi, Yukino Ohashi, Minako Ueda, Amane Mimuro, Jin Sugimoto, Yuka Noguchi, Tomoko Igawa

    Biomolecules 13 (2) 208-208 2023/01/20

    Publisher: MDPI AG

    DOI: 10.3390/biom13020208  

    eISSN: 2218-273X

    More details Close

    In the sexual reproduction of flowering plants, two independent fertilization events occur almost simultaneously: two identical sperm cells fuse with either the egg cell or the central cell, resulting in embryo and endosperm development to produce a seed. GCS1/HAP2 is a sperm cell membrane protein essential for plasma membrane fusion with both female gametes. Other sperm membrane proteins, DMP8 and DMP9, are more important for egg cell fertilization than that of the central cell, suggesting its regulatory mechanism in GCS1/HAP2-driving gamete membrane fusion. To assess the GCS1/HAP2 regulatory cascade in the double fertilization system of flowering plants, we produced Arabidopsis transgenic lines expressing different GCS1/HAP2 variants and evaluated the fertilization in vivo. The fertilization pattern observed in GCS1_RNAi transgenic plants implied that sperm cells over the amount of GCS1/HAP2 required for fusion on their surface could facilitate membrane fusion with both female gametes. The cytological analysis of the dmp8dmp9 sperm cell arrested alone in an embryo sac supported GCS1/HAP2 distribution on the sperm surface. Furthermore, the fertilization failures with both female gametes were caused by GCS1/HAP2 secretion from the egg cell. These results provided a possible scenario of GCS1/HAP2 regulation, showing a potential scheme for capturing additional GCS1/HAP2-interacting proteins.

  9. Dynamic Rearrangement and Directional Migration of Tubular Vacuoles are Required for the Asymmetric Division of the Arabidopsis Zygote Peer-reviewed

    Hikari Matsumoto, Yusuke Kimata, Takumi Higaki, Tetsuya Higashiyama, Minako Ueda

    Plant and Cell Physiology 62 (8) 1280-1289 2021/11/10

    Publisher: Oxford University Press (OUP)

    DOI: 10.1093/pcp/pcab075  

    ISSN: 0032-0781

    eISSN: 1471-9053

    More details Close

    Abstract In most flowering plants, the asymmetric cell division of zygotes is the initial step that establishes the apical–basal axis. In the Arabidopsis zygote, vacuolar accumulation at the basal cell end is crucial to ensure zygotic division asymmetry. Despite the importance, it was unclear whether this polar vacuolar distribution was achieved by predominant biogenesis at the basal region or by directional movement after biogenesis. Here, we found that apical and basal vacuolar contents are dynamically exchanged via a tubular vacuolar network and the vacuoles gradually migrate toward the basal end. The mutant of a vacuolar membrane protein, SHOOT GRAVITROPISM2 (SGR2), failed to form tubular vacuoles, and the mutant of a putative vacuolar fusion factor, VESICLE TRANSPORT THROUGH INTERACTION WITH T-SOLUBLE N-ETHYLMALEIMIDE-SENSITIVE FUSION PROTEIN ATTACHMENT PROTEIN RECEPTORS (SNARES) 11 (VTI11), could not flexibly rearrange the vacuolar network. Both mutants failed to exchange the apical and basal vacuolar contents and to polarly migrate the vacuoles, resulting in a more symmetric division of zygotes. Additionally, we observed that in contrast to sgr2, the zygotic defects of vti11 were rescued by the pharmacological depletion of phosphatidylinositol 3-phosphate (PI3P), a distinct phospholipid in the vacuolar membrane. Thus, SGR2 and VTI11 have individual sites of action in zygotic vacuolar membrane processes. Further, a mutant of YODA (YDA) mitogen-activated protein kinase kinase kinase, a core component of the embryonic axis formation pathway, generated the proper vacuolar network; however, it failed to migrate the vacuoles toward the basal region, which suggests impaired directional cues. Overall, we conclude that SGR2- and VTI11-dependent vacuolar exchange and YDA-mediated directional migration are necessary to achieve polar vacuolar distribution in the zygote.

  10. What is quantitative plant biology? Peer-reviewed

    Daphné Autran, George W. Bassel, Eunyoung Chae, Daphne Ezer, Ali Ferjani, Christian Fleck, Olivier Hamant, Félix P. Hartmann, Yuling Jiao, Iain G. Johnston, Dorota Kwiatkowska, Boon L. Lim, Ari Pekka Mahönen, Richard J. Morris, Bela M. Mulder, Naomi Nakayama, Ross Sozzani, Lucia C. Strader, Kirsten ten Tusscher, Minako Ueda, Sebastian Wolf

    Quantitative Plant Biology 2 2021/05/20

    Publisher: Cambridge University Press (CUP)

    DOI: 10.1017/qpb.2021.8  

    eISSN: 2632-8828

    More details Close

    Abstract Quantitative plant biology is an interdisciplinary field that builds on a long history of biomathematics and biophysics. Today, thanks to high spatiotemporal resolution tools and computational modelling, it sets a new standard in plant science. Acquired data, whether molecular, geometric or mechanical, are quantified, statistically assessed and integrated at multiple scales and across fields. They feed testable predictions that, in turn, guide further experimental tests. Quantitative features such as variability, noise, robustness, delays or feedback loops are included to account for the inner dynamics of plants and their interactions with the environment. Here, we present the main features of this ongoing revolution, through new questions around signalling networks, tissue topology, shape plasticity, biomechanics, bioenergetics, ecology and engineering. In the end, quantitative plant biology allows us to question and better understand our interactions with plants. In turn, this field opens the door to transdisciplinary projects with the society, notably through citizen science.

  11. Dynamics of the cell fate specifications during female gametophyte development in Arabidopsis Peer-reviewed

    Daichi Susaki, Takamasa Suzuki, Daisuke Maruyama, Minako Ueda, Tetsuya Higashiyama, Daisuke Kurihara

    PLOS Biology 19 (3) e3001123-e3001123 2021/03/26

    Publisher: Public Library of Science (PLoS)

    DOI: 10.1371/journal.pbio.3001123  

    eISSN: 1545-7885

    More details Close

    The female gametophytes of angiosperms contain cells with distinct functions, such as those that enable reproduction via pollen tube attraction and fertilization. Although the female gametophyte undergoes unique developmental processes, such as several rounds of nuclear division without cell plate formation and final cellularization, it remains unknown when and how the cell fate is determined during development. Here, we visualized the living dynamics of female gametophyte development and performed transcriptome analysis of individual cell types to assess the cell fate specifications in <italic>Arabidopsis thaliana</italic>. We recorded time lapses of the nuclear dynamics and cell plate formation from the 1-nucleate stage to the 7-cell stage after cellularization using an in vitro ovule culture system. The movies showed that the nuclear division occurred along the micropylar–chalazal (distal–proximal) axis. During cellularization, the polar nuclei migrated while associating with the forming edge of the cell plate, and then, migrated toward each other to fuse linearly. We also tracked the gene expression dynamics and identified that the expression of <italic>MYB98pro</italic>::<italic>GFP–MYB98</italic>, a synergid-specific marker, was initiated just after cellularization in the synergid, egg, and central cells and was then restricted to the synergid cells. This indicated that cell fates are determined immediately after cellularization. Transcriptome analysis of the female gametophyte cells of the wild-type and <italic>myb98</italic> mutant revealed that the <italic>myb98</italic> synergid cells had egg cell–like gene expression profiles. Although in <italic>myb98</italic>, egg cell–specific gene expression was properly initiated in the egg cells only after cellularization, but subsequently expressed ectopically in one of the 2 synergid cells. These results, together with the various initiation timings of the egg cell–specific genes, suggest complex regulation of the individual gametophyte cells, such as cellularization-triggered fate initiation, MYB98-dependent fate maintenance, cell morphogenesis, and organelle positioning. Our system of live-cell imaging and cell type–specific gene expression analysis provides insights into the dynamics and mechanisms of cell fate specifications in the development of female gametophytes in plants.

  12. Mitochondrial dynamics and segregation during the asymmetric division of Arabidopsis zygotes Peer-reviewed

    Yusuke Kimata, Takumi Higaki, Daisuke Kurihara, Naoe Ando, Hikari Matsumoto, Tetsuya Higashiyama, Minako Ueda

    Quantitative Plant Biology 1 2020/11/30

    Publisher: Cambridge University Press (CUP)

    DOI: 10.1017/qpb.2020.4  

    eISSN: 2632-8828

    More details Close

    <title>Abstract</title> The zygote is the first cell of a multicellular organism. In most angiosperms, the zygote divides asymmetrically to produce an embryo-precursor apical cell and a supporting basal cell. Zygotic division should properly segregate symbiotic organelles, because they cannot be synthesized <italic>de novo</italic>. In this study, we revealed the real-time dynamics of the principle source of ATP biogenesis, mitochondria, in <italic>Arabidopsis thaliana</italic> zygotes using live-cell observations and image quantifications. In the zygote, the mitochondria formed the extended structure associated with the longitudinal array of actin filaments (F-actins) and were polarly distributed along the apical–basal axis. The mitochondria were then temporally fragmented during zygotic division, and the resulting apical cells inherited mitochondria at higher concentration compared to the basal cells. Further observation of postembryonic organs showed that these mitochondrial behaviours are characteristic of the zygote. Overall, our results showed that the zygote has spatiotemporal regulation that unequally distributes the mitochondria.

  13. A new role for histone demethylases in the maintenance of plant genome integrity Peer-reviewed

    Javier Antunez-Sanchez, Matthew Naish, Juan Sebastian Ramirez-Prado, Sho Ohno, Ying Huang, Alexander Dawson, Korawit Opassathian, Deborah Manza-Mianza, Federico Ariel, Cecile Raynaud, Anjar Wibowo, Josquin Daron, Minako Ueda, David Latrasse, R Keith Slotkin, Detlef Weigel, Moussa Benhamed, Jose Gutierrez-Marcos

    eLife 9 2020/10/27

    Publisher: eLife Sciences Publications, Ltd

    DOI: 10.7554/elife.58533  

    eISSN: 2050-084X

    More details Close

    Histone modifications deposited by the Polycomb repressive complex 2 (PRC2) play a critical role in the control of growth, development, and adaptation to environmental fluctuations of most multicellular eukaryotes. The catalytic activity of PRC2 is counteracted by Jumonji-type (JMJ) histone demethylases, which shapes the genomic distribution of H3K27me3. Here, we show that two JMJ histone demethylases in <italic>Arabidopsis</italic>, EARLY FLOWERING 6 (ELF6) and RELATIVE OF EARLY FLOWERING 6 (REF6), play distinct roles in H3K27me3 and H3K27me1 homeostasis. We show that failure to reset these chromatin marks during sexual reproduction results in the transgenerational inheritance of histone marks, which cause a loss of DNA methylation at heterochromatic loci and transposon activation. Thus, Jumonji-type histone demethylases play a dual role in plants by helping to maintain transcriptional states through development and safeguard genome integrity during sexual reproduction.

  14. Intracellular dynamics and transcriptional regulations in plant zygotes: a case study of Arabidopsis

    Yusuke Kimata, Minako Ueda

    Plant Reproduction 33 (2) 89-96 2020/06

    Publisher: Springer Science and Business Media LLC

    DOI: 10.1007/s00497-020-00389-7  

    ISSN: 2194-7953

    eISSN: 2194-7961

  15. Live-Cell Imaging of Zygotic Intracellular Structures and Early Embryo Pattern Formation in Arabidopsis thaliana. International-journal Peer-reviewed

    Minako Ueda, Yusuke Kimata, Daisuke Kurihara

    Methods in molecular biology (Clifton, N.J.) 2122 37-47 2020/01

    DOI: 10.1007/978-1-0716-0342-0_4  

    More details Close

    Plant embryogenesis begins with fertilization and ends with the generation of the basic body plan of the future plant. Despite its importance, the dynamics of flowering plant ontogeny have long been a mystery, because the embryo develops deep in the maternal tissue. Recently, an embryonic live-cell imaging system was established in Arabidopsis thaliana by developing an in vitro ovule cultivation method and utilizing two-photon excitation microscopy (2PEM), which is suitable for deep imaging. This system enabled us to visualize intracellular dynamics during zygote polarization and monitor the cell division pattern during embryogenesis from the zygote until organ formation. In this chapter, we describe a method that allows for high-resolution imaging of cytoskeletal rearrangements in the zygote and long-term tracing of embryo patterning.

  16. New cues for body axis formation in plant embryos Peer-reviewed

    Minako Ueda, Frédéric Berger

    Current Opinion in Plant Biology 47 16-21 2019/02

    Publisher: Elsevier BV

    DOI: 10.1016/j.pbi.2018.08.005  

    ISSN: 1369-5266

  17. Polar vacuolar distribution is essential for accurate asymmetric division of Arabidopsis zygotes. International-journal Peer-reviewed

    Kimata Y, Kato T, Higaki T, Kurihara D, Yamada T, Segami S, Morita MT, Maeshima M, Hasezawa S, Higashiyama T, Tasaka M, Ueda M

    Proceedings of the National Academy of Sciences of the United States of America 116 (6) 2338-2343 2019/02

    DOI: 10.1073/pnas.1814160116  

    ISSN: 0027-8424

    More details Close

    In most flowering plants, the asymmetric cell division of the zygote is the initial step in establishing the apical-basal axis of the mature plant. The zygote is polarized, possessing the nucleus at the apical tip and large vacuoles at the basal end. Despite their known polar localization, whether the positioning of the vacuoles and the nucleus is coordinated and what the role of the vacuole is in the asymmetric zygotic division remain elusive. In the present study, we utilized a live-cell imaging system to visualize the dynamics of vacuoles during the entire process of zygote polarization in Arabidopsis Image analysis revealed that the vacuoles formed tubular strands around the apically migrating nucleus. They gradually accumulated at the basal region and filled the space, resulting in asymmetric distribution in the mature zygote. To assess the role of vacuoles in the zygote, we screened various vacuole mutants and identified that shoot gravitropism2 (sgr2), in which the vacuolar structural change was impaired, failed to form tubular vacuoles and to polarly distribute the vacuole. In sgr2, large vacuoles occupied the apical tip and thus nuclear migration was blocked, resulting in a more symmetric zygotic division. We further observed that tubular vacuole formation and asymmetric vacuolar distribution both depended on the longitudinal array of actin filaments. Overall, our results show that vacuolar dynamics is crucial not only for the polar distribution along actin filaments but also for adequate nuclear positioning, and consequently zygote-division asymmetry.

  18. シロイヌナズナ受精卵の極性化動態

    植田美那子, 植田美那子, 木全祐資, 加藤壮英, 桧垣匠, 桧垣匠, 山田朋美, 山田朋美, 栗原大輔, 栗原大輔, 森田(寺尾)美代, 森田(寺尾)美代, 馳澤盛一郎, 東山哲也, 東山哲也, 東山哲也, 田坂昌生

    Plant Morphology 30 (1) 2018

    ISSN: 0918-9726

  19. In Vitro Ovule Cultivation for Live-cell Imaging of Zygote Polarization and Embryo Patterning in Arabidopsis thaliana Invited Peer-reviewed

    Daisuke Kurihara, Yusuke Kimata, Tetsuya Higashiyama, Minako Ueda

    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS (127) 2017/09

    DOI: 10.3791/55975  

    ISSN: 1940-087X

  20. Transcriptional integration of paternal and maternal factors in the Arabidopsis zygote Peer-reviewed

    Minako Ueda, Ernst Aichinger, Wen Gong, Edwin Groot, Inge Verstraeten, Lam Dai Vu, Ive De Smet, Tetsuya Higashiyama, Masaaki Umeda, Thomas Laux

    GENES & DEVELOPMENT 31 (6) 617-627 2017/03

    DOI: 10.1101/gad.292409.116  

    ISSN: 0890-9369

    eISSN: 1549-5477

  21. シロイヌナズナ受精卵の極性化動態

    木全祐資, 栗原大輔, 栗原大輔, 栗原大輔, 桧垣匠, 河島友和, 佐藤良勝, 山田朋美, BERGER Frederic, 馳澤盛一郎, 東山哲也, 東山哲也, 東山哲也, 植田美那子, 植田美那子

    Plant Morphology 29 (1) 2017

    ISSN: 0918-9726

  22. Cytoskeleton dynamics control the first asymmetric cell division in Arabidopsis zygote Peer-reviewed

    Yusuke Kimata, Takumi Higaki, Tomokazu Kawashima, Daisuke Kurihara, Yoshikatsu Sato, Tomomi Yamada, Seiichiro Hasezawa, Frederic Berger, Tetsuya Higashiyama, Minako Ueda

    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 113 (49) 14157-14162 2016/12

    DOI: 10.1073/pnas.1613979113  

    ISSN: 0027-8424

  23. Combination of Synthetic Chemistry and Live-Cell Imaging Identified a Rapid Cell Division Inhibitor in Tobacco and Arabidopsis thaliana. Peer-reviewed

    Masakazu Nambo, Daisuke Kurihara, Tomomi Yamada, Taeko Nishiwaki-Ohkawa, Naoya Kadofusa, Yusuke Kimata, Keiko Kuwata, Masaaki Umeda, Minako Ueda

    Plant & cell physiology 57 (11) 2255-2268 2016/11

    DOI: 10.1093/pcp/pcw140  

    eISSN: 1471-9053

    More details Close

    Cell proliferation is crucial to the growth of multicellular organisms, and thus the proper control of cell division is important to prevent developmental arrest or overgrowth. Nevertheless, tools for controlling cell proliferation are still poor in plant. To develop novel tools, we focused on a specific compound family, triarylmethanes, whose members show various antiproliferative activities in animals. By combining organic chemistry to create novel and diverse compounds containing the triarylmethyl moiety and biological screens based on live-cell imaging of a fluorescently labeled tobacco Bright Yellow-2 (BY-2) culture cell line (Nicotiana tabacum), we isolated (3-furyl)diphenylmethane as a strong but partially reversible inhibitor of plant cell division. We also found that this agent had efficient antiproliferative activity in developing organs of Arabidopsis thaliana without causing secondary defects in cell morphology, and induced rapid cell division arrest independent of the cell cycle stage. Given that (3-furyl)diphenylmethane did not affect the growth of a human cell line (HeLa) and a budding yeast (Saccharomyces cerevisiae), it should act specifically on plants. Taking our results together, we propose that the combination of desired chemical synthesis and detailed biological analysis is an effective tool to create novel drugs, and that (3-furyl)diphenylmethane is a specific antiproliferative agent for plants.

  24. Live-Cell Imaging and Optical Manipulation of Arabidopsis Early Embryogenesis Peer-reviewed

    Keita Gooh, Minako Ueda, Kana Aruga, Jongho Park, Hideyuki Arata, Tetsuya Higashiyama, Daisuke Kurihara

    DEVELOPMENTAL CELL 34 (2) 242-251 2015/07

    DOI: 10.1016/j.devcel.2015.06.008  

    ISSN: 1534-5807

    eISSN: 1878-1551

  25. Rapid Elimination of the Persistent Synergid through a Cell Fusion Mechanism Peer-reviewed

    Daisuke Maruyama, Ronny Voelz, Hidenori Takeuchi, Toshiyuki Mori, Tomoko Igawa, Daisuke Kurihara, Tomokazu Kawashima, Minako Ueda, Masaki Ito, Masaaki Umeda, Shuh-ichi Nishikawa, Rita Gross-Hardt, Tetsuya Higashiyama

    CELL 161 (4) 907-918 2015/05

    DOI: 10.1016/j.cell.2015.03.018  

    ISSN: 0092-8674

    eISSN: 1097-4172

  26. Environment-Sensitive Fluorescent Probe: A Benzophosphole Oxide with an Electron-Donating Substituent Peer-reviewed

    Eriko Yamaguchi, Chenguang Wang, Aiko Fukazawa, Masayasu Taki, Yoshikatsu Sato, Taeko Sasaki, Minako Ueda, Narie Sasaki, Tetsuya Higashiyama, Shigehiro Yamaguchi

    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 54 (15) 4539-4543 2015/04

    DOI: 10.1002/anie.201500229  

    ISSN: 1433-7851

    eISSN: 1521-3773

  27. A dual-color marker system for in vivo visualization of cell cycle progression in Arabidopsis Peer-reviewed

    Ke Yin, Minako Ueda, Hitomi Takagi, Takehiro Kajihara, Shiori Sugamata Aki, Takashi Nobusawa, Chikage Umeda-Hara, Masaaki Umeda

    PLANT JOURNAL 80 (3) 541-552 2014/11

    DOI: 10.1111/tpj.12652  

    ISSN: 0960-7412

    eISSN: 1365-313X

  28. ATM-mediated phosphorylation of SOG1 is essential for the DNA damage response in Arabidopsis Peer-reviewed

    Okamoto-Yoshiyama, K, Kobayashi, J, Ueda, M, Kimura, S, Maki, H, Umeda, M

    EMBO Reports 14 (9) 817-822 2013/08/02

  29. The origin of the plant body axis

    Minako Ueda, Thomas Laux

    Current Opinion in Plant Biology 15 (6) 578-584 2012/12

    Publisher: Elsevier BV

    DOI: 10.1016/j.pbi.2012.08.001  

    ISSN: 1369-5266

  30. Arabidopsis RPT2a Encoding the 26S Proteasome Subunit is Required for Various Aspects of Root Meristem Maintenance, and Regulates Gametogenesis Redundantly with its Homolog, RPT2b Peer-reviewed

    Minako Ueda, Keisuke Matsui, Sumie Ishiguro, Tomohiko Kato, Satoshi Tabata, Masatomo Kobayashi, Motoaki Seki, Kazuo Shinozaki, Kiyotaka Okada

    PLANT AND CELL PHYSIOLOGY 52 (9) 1628-1640 2011/09

    DOI: 10.1093/pcp/pcr093  

    ISSN: 0032-0781

  31. Transcriptional Activation of Arabidopsis Axis Patterning Genes WOX8/9 Links Zygote Polarity to Embryo Development Peer-reviewed

    Minako Ueda, Zhongjuan Zhang, Thomas Laux

    DEVELOPMENTAL CELL 20 (2) 264-270 2011/02

    DOI: 10.1016/j.devcel.2011.01.009  

    ISSN: 1534-5807

  32. Molecular mechanism of plant axis formation during early embryogenesis

    Minako Ueda, Tetsuya Higashiyama

    PLANT MORPHOLOGY 22 (1) 23-31 2010

    Publisher: The Japanese Society of Plant Morphology

    DOI: 10.5685/plmorphol.22.23  

    ISSN: 0918-9726

    eISSN: 1884-4154

  33. Differential Expression of WOX Genes Mediates Apical-Basal Axis Formation in the Arabidopsis Embryo Peer-reviewed

    Holger Breuninger, Enno Rikirsch, Marita Hermann, Minako Ueda, Thomas Laux

    Developmental Cell 14 (6) 867-876 2008/06

    Publisher: Elsevier BV

    DOI: 10.1016/j.devcel.2008.03.008  

    ISSN: 1534-5807

  34. Stepwise understanding of root development

    Minako Ueda, Yoshihiro Koshino-Kimura, Kiyotaka Okada

    Current Opinion in Plant Biology 8 (1) 71-76 2005/02

    Publisher: Elsevier BV

    DOI: 10.1016/j.pbi.2004.11.014  

    ISSN: 1369-5266

  35. The HALTED ROOT gene encoding the 26S proteasome subunit RPT2a is essential for the maintenance of Arabidopsis meristems

    M. Ueda

    Development 131 (9) 2101-2111 2004/03/31

    Publisher: The Company of Biologists

    DOI: 10.1242/dev.01096  

    ISSN: 0950-1991

    eISSN: 1477-9129

Show all ︎Show first 5

Misc. 5

  1. 増大特集 学術研究支援の最先端 Ⅰ.先端バイオイメージング支援プラットフォーム(ABiS) ⅳ.画像解析支援 植物の細胞分裂を阻害する新たな薬剤の発見

    木全 祐資, 植田 美那子

    生体の科学 75 (5) 422-423 2024/10/15

    Publisher: 株式会社医学書院

    DOI: 10.11477/mf.2425201909  

    ISSN: 0370-9531

    eISSN: 1883-5503

  2. Live-cell imaging of the dynamics of plant zygote polarization

    Ueda Minako

    PLANT MORPHOLOGY 29 (1) 23-26 2017

    Publisher: The Japanese Society of Plant Morphology

    DOI: 10.5685/plmorphol.29.23  

    ISSN: 0918-9726

    eISSN: 1884-4154

    More details Close

    The basic body plan of an organism develops from a unicellular zygote. In most plants, the zygote divides asymmetrically, generating two daughter cells of different fates: the small apical daughter will form the aerial organs of the plant, whereas the large basal cell will produce the below-ground root. Therefore zygote polarization would be crucial to establish the shoot-root (apical-basal) axis of mature plant. Despite the obvious importance, how dynamically the zygote polarizes has long been obscure. In this review, I introduce the recent findings of the zygote polarization dynamics, which were obtained by using live-cell imaging of Arabidopsis thaliana. By combining image analysis and specific inhibitors, this live-cell imaging system enabled to quantify the zygotic features and to identify the driving force of zygote polarization. Here I introduce these findings to consider how we can reveal the mechanisms of plant body axis formation.

  3. 植物の初期胚イメージング系の発展

    植田 美那子

    植物科学の最前線 7 (D) 177-181 2016

    Publisher: 公益社団法人 日本植物学会

    DOI: 10.24480/bsj-review.7d5.00093  

    eISSN: 2432-9819

  4. Axis formation of Arabidopsis embryos: Link of zygotic polarity and embryo patterning

    Ueda Minako

    PLANT MORPHOLOGY 24 (1) 89-96 2012

    Publisher: The Japanese Society of Plant Morphology

    DOI: 10.5685/plmorphol.24.89  

    ISSN: 0918-9726

    eISSN: 1884-4154

    More details Close

    In most flowering plants, the apical-basal body axis is initiated by an asymmetric division of the polarized zygote. This division generates two daughter cells of different fates: the small apical daughter will form the aerial organs of the plant, whereas the large basal cell will produce the below-ground root. Despite the obvious importance, how the zygote polarizes and how this asymmetry is translated to the embryo axis have been obscure. Recently we identified that Arabidopsis zinc-finger transcription factor WRKY2 regulates both of the zygote polarity and the embryo patterning. In this review, we summarize how we found WRKY2 and discuss what we should do to reveal the molecular mechanism of WRKY2-dependent axis formation.

  5. 根端分裂組織-根端分裂組織の維持に関わる制御因子

    植田 美那子

    蛋白質核酸酵素増刊 植物の形づくり 第47巻第12号 1530-1534 2002

Books and Other Publications 3

  1. Essential Genetics and Genomics

    2021/01

    ISBN: 9784759820485

  2. Plant physiology and development

    2017/02

    ISBN: 9784061538962

  3. 細胞履歴に基づく植物の形態形成

    植田美那子

    国際高等研究所 2011/07/29

Presentations 37

  1. Intra-cellular dynamics in zygotes and early embryos Invited

    Minako Ueda

    Joint Meeting of JSCB 77th and JSDB 58th 2025/07/17

  2. Live-cell imaging and mechanical simulation of plant axis formation during early embryogenesis Invited

    Minako Ueda

    Cold Spring Harbor Asia Conference “Plant Reproductive Development and Genomics” 2025/05/21

  3. Live-cell imaging of Marchantia zygote Invited

    Minako Ueda

    International Marchantia Workshop 2024 2024/11/19

  4. Non-model organisms and imaging

    2024/07/18

  5. Live-cell imaging and quantitative modeling of the body axis formation during Arabidopsis embryogenesis. Invited

    Minako Ueda

    The 27th International Congress on Sexual Plant Reproduction (27th ICSPR) 2024/07/09

  6. Plant axis formation during early embryogenesis. Invited

    Minako Ueda

    Gordon Research Conference “Plant Molecular Biology” 2024/06/10

  7. ライブセルイメージングで解き明かす植物初期胚の内部流動ダイナミクス Invited

    植田美那子

    第46回日本分子生物学会年会 2023/12/06

  8. Live-cell imaging of the body axis formation during Arabidopsis embryogenesis.

    Minako Ueda

    Taiwan-Japan Plant Biology 2023 (TJPB2023) 2023/10/14

  9. ライブイメージングと定量数理解析で迫る植物受精卵の極性化機構

    植田 美那子

    第75回日本細胞生物学会大会 2023/06/28

  10. Quantification of zygote polarization dynamics for body axis formation in Arabidopsis.

    Minako Ueda

    The 33rd International Conference on Arabidopsis Research (ICAR2023) 2023/06/06

  11. 植物受精卵における細胞内動態のライブイメージング Invited

    植田美那子

    植物生理学会第64回年会関連集会「第25 回植物オルガネラワークショップ」 2023/03/14

  12. 植物発生のライブイメージング 〜たった一つの受精卵から植物体ができる仕組み〜 Invited

    植田美那子

    異分野融合研究セミナーiSeminar 2023/02/14

  13. 植物発生のライブイメージング 〜たった一つの細胞から、何がどうなって植物体になるの? Invited

    植田美那子

    第68 回 MNTC 講演会 2022/11/04

  14. ライブイメージングと画像解析で迫る植物受精卵の極性化動態 Invited

    植田美那子, 檜垣匠

    生命科学連携推進協議会 4プラットフォーム成果シンポジウム 2022/06/03

  15. Live-cell imaging of body axis formation in plant embryos. Invited

    Ueda M

    Japan-Singapore Joint Meeting 2022 "Multi-scale patterning in development" 2022/05/30

  16. 植物胚における体軸形成機構 Invited

    植田美那子

    第63回日本植物生理学会年会 日本植物生理学会奨励賞受賞講演, オンライン 2022/03/23

  17. Live-cell imaging of the polarization dynamics of plant zygote. Invited

    Ueda M, Kimata Y, Matsumoto H, Higaki T, Komatsu T, Tanaka S, Kurihara D, Higashiyama T

    2021/12/03

  18. 受精卵と初期胚における周期と変調から解き明かす植物の体軸形成機構 Invited

    植田美那子, 小松大鳳, 田中小百合, 檜垣匠, 松本光梨, 木全祐資, 鎌本直也, 藤本仰一, 東山哲也

    日本植物学会第85回大会, オンライン 2021/09/18

  19. Spatiotemporal dynamics of axis formation in Arabidopsis embryos. Invited

    Ueda M., Kimata Y., Matsumoto H., Higaki T., Kurihara D., Higashiyama T.

    国際ウェビナーシリーズ “From Cellular Dynamics to Morphology” 2020/12/08

  20. ライブイメージングで迫るシロイヌナズナの体軸形成機構

    植田美那子, 木全祐資, 松本光梨, 桧垣匠, 小松大鳳, 田中小百合, 栗原大輔, 東山哲也

    東北植物学会第10 回山形オンライン大会 2020/12/13

  21. Live imaging of asymmetric cell division of plant zygote. Invited

    Kimata Y, Higaki T, Kurihara D, Higashiyama T, Ueda M

    2020/12/03

  22. ライブイメージングと画像解析で迫る植物の体軸形成機構 Invited

    植田美那子

    東北大学・理化学研究所連携シンポジウム 2020/12/01

  23. Live-cell imaging from zygote polarization to embryo patterning in plant. Invited

    Ueda M, Kimata Y, Tanaka S, Higaki T, Kurihara D, Higashiyama T

    2020/09/24

  24. 受精卵の内部動態から迫る植物の体軸形成機構

    植田美那子, 木全祐資, 松本光梨, 檜垣匠, 栗原大輔, 東山哲也

    日本植物学会第84回大会 2020/09/19

  25. Live-cell imaging of the polarization dynamics of plant zygote: Polar vacuolar distribution is essential for accurate asymmetric division. Invited

    Ueda M, Kimata Y, Kato T, Higaki T, Kurihara D, Segami S, Morita M. T, Maeshima M, Hasezawa S, Higashiyama T

    2019/12/04

  26. ライブイメージングで迫る植物の初期発生機構 Invited

    植田美那子

    首都大学東京バイオコンファレンス2019 2019/11/15

  27. Live-cell imaging of the intracellular dynamics of Arabidopsis zygote. Invited

    Kimata Y, Ando N, Higaki T, Kurihara D, Kato T, Yamada T, Segami S, Morita M. T, Maeshima M, Hasezawa S, Higashiyama T, Tasaka M, Ueda M

    Genomic Arabidopsis Resource Network 2018 (GARNet 2018) 2018/09/19

  28. Live-cell imaging of the axis formation in Arabidopsis zygote. Invited

    Kimata Y, Ando N, Kato T, Higaki T, Kurihara D, Yamada T, Segami S, Morita M. T, Maeshima M, Hasezawa S, Higashiyama T, Tasaka M, Ueda M

    The 25th International Congress on Sexual Plant Reproduction (25th ICSPR) 2018/06/14

  29. 受精による細胞極性の破壊と再構成〜ライブイメージングで迫る受精前後の細胞内変化〜 Invited

    植田美那子, 木全祐資, 加藤壮英, 桧垣匠, 山田朋美, 栗原大輔, 森田(寺尾) 美代, 馳澤盛一郎, 東山哲也, 田坂昌生

    日本植物学会第81回大会 2017/09/08

  30. Live-cell imaging of the plant axis formation responding to fertilization signals. Invited

    Kimata Y, Higaki T, Kawashima T, Kurihara D, Sato Y, Yamada T, Hasezawa S, Berger F, Higashiyama T, Ueda M

    International Symposium on Imaging Frontier 2017 (ISIF2017) 2017/07/09

  31. Live-cell imaging of the intracellular dynamics during zygote polarization. Invited

    Ueda M, Kimata Y, Higaki T, Kawashima T, Kurihara D, Sato Y, Yamada T, Hasezawa S, Berger F, Higashiyama T

    28th International Conference on Arabidopsis Research (ICAR2017) 2017/06/27

  32. Live imaging of microtubule dynamics during plant zygote polarization. Invited

    Kimata Y, Higaki T, Kawashima T, Kurihara D, Sato Y, Yamada T, Hasezawa S, Berger F, Higashiyama T, Ueda M

    2017/06/14

  33. How plant body is generated from a single cell? Invited

    Ueda M

    2016/10/07

  34. 受精卵の極性化動態 〜植物の体軸形成のしくみ〜 Invited

    木全祐資, 栗原大輔, 東山哲也, 植田美那子

    第38回日本分子生物学会年会 2015/12/02

  35. シロイヌナズナ受精卵のイメージングとケミカルスクリーニング:細胞極性と不等分裂を制御する仕組みとは? Invited

    植田美那子, 木全祐資, 栗原大輔, 山田朋美, 南保正和, 大川(西脇)妙子, 桑田啓子, 梅田正明, 東山哲也

    日本植物学会第79回大会 2015/09/06

  36. Combination of live imaging and chemical approach to understand the axis formation mechanism of Arabidopsis zygote. Invited

    Kurihara D, Sato A, Higashiyama T, Ueda M

    International ERATO Higashiyama Live-Holonics Symposium 2015/08/27

  37. Integration of paternal and maternal factors directly regulates transcription of Arabidopsis embryo patterning gene WOX8. Invited

    Ueda M, Zhang Z, Aichinger E, Higashiyama T, Umeda M, Groot E, Laux T

    ITbM-UoF Symposium 2014/06/15

Show all Show first 5

Industrial Property Rights 1

  1. 植物細胞分裂抑制剤

    植田美那子, 南保正和, 栗原大輔, 桑田啓子, 大川(西脇)妙子

    Property Type: Patent

Research Projects 20

  1. Key-Molecule-Network in Plant Reproduction

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Fund for the Promotion of Joint International Research (International Leading Research )

    Category: Fund for the Promotion of Joint International Research (International Leading Research )

    Institution: The University of Tokyo

    2023/01 - 2029/03

  2. 受精卵に特徴的な微小管構造から植物の体軸形成機構を解き明かす

    植田 美那子

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業

    Category: 基盤研究(B)

    Institution: 東北大学

    2023/04 - 2026/03

  3. 生命情報の低次元化を起点とする多階層モデル駆動型研究戦略の創出

    植田 美那子

    Offer Organization: 科学技術振興機構

    System: 戦略的な研究開発の推進 戦略的創造研究推進事業 CREST

    Institution: 東北大学

    2021/10 - 2026/03

    More details Close

    高次元かつ多階層の生命システムは複雑であり、「どの遺伝子が、どの事象を制御し、どのルールに寄与するか」という分子機構の全容を解明することは至難です。本研究では、生命システム自体を低次元化した定量数理モデル(多階層モデル)を構築し、そこにオミクス解析やイメージング解析から得た実体情報も低次元化して導入することで、生命システムを包括的に理解するという新たな方法論の開発を目指します。

  4. たった一つの受精卵から、何がどうなって植物の形ができるの?

    Institution: Tohoku University

    2021/04 - 2026/03

  5. Intrinsic periodicity of cellular systems and its modulation as the driving force be

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

    Category: Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

    Institution: Tohoku University

    2019/06 - 2024/03

  6. 受精卵の周期的動態が非対称性と体軸を生み出す原理の解明

    植田 美那子

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 新学術領域研究(研究領域提案型)

    Category: 新学術領域研究(研究領域提案型)

    Institution: 東北大学

    2019/06 - 2024/03

    More details Close

    受精卵の極性化と不等分裂は、個体発生の原点である。しかし植物では、受精卵内部でどのような因子が、どのような現象を制御するのか、いまだほとんど分かっていない。その理由としては、被子植物の花の奥深くに存在する受精卵や胚を生きたまま観察する手法がなかったことと、従来の遺伝学的スクリーニングは、致死性や冗長性のために鍵遺伝子を見出すには不充分だった点が挙げられる。そんななか、研究代表者らはシロイヌナズナを用いて、細胞内動態の詳細なライブイメージングを進めてきた(Susaki et. al., 2021)。このライブイメージング手法と、多様な変異体や阻害剤を組み合わせた解析の結果、受精卵での細胞周期の進行や、それに伴うオルガネラ構造の変化など、さまざまな周期動態を見出した。さらに、液胞のような巨大なオルガネラも、柔軟に形を変えながら徐々に受精卵の基部側に移動し、受精卵から始まる頂端-基部軸の形成に寄与することを発見した。さらに、この動態が、液胞膜の柔軟化や移動方向の決定など、さまざまな過程を経て制御されることも見出し、各過程が、膜リン脂質を介した小胞輸送経路や、受精後に活性化されるリン酸化経路によって実現することも突き止めた(Matsumoto et. al., 2021)。加えて、受精卵や初期胚を単離してトランスクリプトーム(RNA-seq)解析を行い、見出した候補遺伝子群の役割について検討した結果、体軸形成に必要だと考えられる因子を複数得ることに成功した(投稿準備中)。さらに、本研究において見出した細胞内事象や、研究におけるライブイメージング手法の有効性について、学会や学術誌において報告した(Autran et. al., 2021)。

  7. 植物の体軸を作る分子機構の解明

    Institution: Tohoku University

    2021 - 2023

  8. 植物の上下軸の決定と上下軸に沿ったパターン形成を担う分子機構

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)

    Category: Grant-in-Aid for Scientific Research (B)

    Institution: Tohoku University

    2019/04 - 2022/03

  9. Comprehensive imaging of intracellular dynamics and homemade compounds to elucidate the mechanism of asymmetric division in plants.

    Ueda Minako

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Research (Exploratory)

    Category: Grant-in-Aid for Challenging Research (Exploratory)

    Institution: Tohoku University

    2019/06 - 2021/03

    More details Close

    Polarization and unequal division of zygote are the initial points of ontogeny. In plants, however, it has been largely unknown what factors regulate what events inside the zygote. In this study, we performed comprehensive live imaging in Arabidopsis thaliana and found that the huge vacuoles are essential for the regulation of asymmetric divisions in the zygote (Matsumoto et. al., 2021). Chemical screening also led to the discovery of several novel inhibitors that act on various regulations in plant cell division (in preparation).

  10. 2つの鍵穴をもつ転写因子が父鍵と母鍵と結合することで胚の体軸が形成される

    植田 美那子

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 新学術領域研究(研究領域提案型)

    Category: 新学術領域研究(研究領域提案型)

    Institution: 名古屋大学

    2019/04 - 2020/03

    More details Close

    新種が誕生するには、異種間での生殖によって生じた交雑胚が無事に発生する必要がある。しかし、同じ品種間の掛け合わせでさえ、交雑胚が奇形や致死になることが知られている。つまり、父母に由来する因子が適切に協働することが胚発生に重要だと考えられるが、どのような父母因子が胚発生の何を制御するのか、ほとんど分かっていなかった。 そこで研究代表者は、被子植物であるシロイヌナズナを用いて、父母に由来する因子の制御下で胚発生を担うしくみを理解するべく、父母の両方から受精卵に持ち込まれて体軸形成を制御するWRKY2転写因子と父親(精細胞)からのみ持ち込まれる偽キナーゼであるSSP、母親(卵細胞)のみに由来するHDG11/12転写因子の三者に着目し、これらが協働することで、その下流で胚発生の何が制御されるのかを解明するべく、研究をおこなった。具体的には、これら父母性の鍵因子群の下流で働く遺伝子を網羅的に同定する新たな実験系を確立したとともに、これら因子の相互作用の結果として制御される、さまざまな細胞内事象を高精細にライブイメージングした。 これらの成果について、本新学術領域の領域班会議で発表しただけでなく、国際シンポジウムにて招待講演を行った。また、受精卵の内部で起こるさまざまな細胞内事象をライブイメージングする系について、新規の方法論として公開した(Ueda et. al., Plant Embryogenesis (Methods in Molecular Biology, Springer Protocol), 印刷中)。

  11. Elucidation of mechanisms that control chromatin movement in response to environmental stimuli

    Matsunaga Sachihiro, Ueda Minako

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research

    Category: Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

    Institution: Tokyo University of Science

    2015/06 - 2020/03

    More details Close

    We identified factors that regulate chromatin dynamics in plants and clarified the complex and regulatory pathway of the chromatin dynamics regulation from the interaction of the factors. We revealed how plants respond to environmental stimuli, such as radiation and chemical substances, and how they immediately turn on gene expression in the shoot regeneration.

  12. Integrative system of autonomous environmental signal recognition and memorization for plant plasticity

    Toshinori Kinoshita

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research

    Category: Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

    Institution: Nagoya University

    2015/06 - 2020/03

    More details Close

    This new area of scientific study began with the goal of performing an integrated analysis of the dynamic environmental response control system in plants. This analysis includes clarifying the flexible and ingenious local and autonomous environmental response system evolved by immobile plants, which is completely different from those of animals, as well as a new spatiotemporal perspective. Specifically, we seek to analyze the long-distance signal transduction system of plants, as well as the environmental memory system that caches information via chromatin modifications. Actually, we have obtained exciting results regarding the dynamic environmental response control system in plants.

  13. 2つの鍵穴をもつ転写因子が父鍵と母鍵と結合することで胚の体軸が形成される

    植田 美那子

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 新学術領域研究(研究領域提案型)

    Category: 新学術領域研究(研究領域提案型)

    Institution: 名古屋大学

    2017/04 - 2019/03

    More details Close

    有性生殖を行う多くの被子植物では、父親が作る精細胞と、母親が作る卵細胞が融合することで、新しい世代である受精卵が生まれ、それが細胞内極性の獲得から始まる一連の体軸形成過程を経ることで、適切な植物体の形を作り上げる。この発生の初期過程において、父母に由来する因子群が胚発生の何を担うかを理解するべく、被子植物であるシロイヌナズナにおいて、父母の両方から受精卵に持ち込まれて体軸形成を制御するWRKY2転写因子と父親(精細胞)からのみ持ち込まれる偽キナーゼであるSSP、母親(卵細胞)のみに由来するHDG11/12転写因子の三者に着目して研究をおこなった。それぞれの相互作用を詳細に判定するとともに、各因子の変異体や機能改変株を用いて精査した結果、これらが協調的に働くことで、WOX8遺伝子の転写が活性化され、受精卵の極性や胚の体軸が確立されることが明らかになった。また、これらの下流で、受精卵の極性化から始まる体軸形成が駆動される動態を可視化する方策として、シロイヌナズナを用いて、植物の受精卵の内部を高精細にライブイメージングする方法論を構築した(Ueda et. al., 2020)。この新規ライブイメージング手法や、これを用いて見出した細胞内動態について、多くの国内外の学会で発表するとともに、学術誌での公表にも至った(Kimata and Ueda, 2020)。さらに、さまざまな細胞内事象を可視化したマーカーの構築を進めており、これらをライブイメージングすることで見出した体軸形成過程の詳細について、現在論文を執筆中である。

  14. Novel methods for live-imaging and chemical screening to reveal the molecular mechanism of plant asymmetric cell division

    Ueda Minako

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Exploratory Research

    Category: Grant-in-Aid for Challenging Exploratory Research

    Institution: Nagoya University

    2016/04 - 2019/03

    More details Close

    In most flowering plants, the asymmetric cell division of the zygote is the initial step in establishing the apical-basal axis. In Arabidopsis thaliana, the zygote is polarized, possessing the nucleus at the apical tip in the elongated cell. In spite of its obvious asymmetry, the real-time dynamics of the zygote polarization steps was poorly understood. Therefore we established a live-cell imaging system to visualize intracellular dynamics of the zygote through the ovule (Ueda and Berger, 2018). By combining this system with various specific inhibitors and mutants, we assessed the dynamics and roles of vacuoles in the zygote polarization (Kimata et. al., 2019). We also have found novel compounds, which effectively inhibit the zygotic division (in manuscript preparation).

  15. How the plant body axis is to established under the transcriptional network that is activated by fertilization?

    Ueda Minako

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research

    Category: Grant-in-Aid for Young Scientists (B)

    Institution: Nagoya University

    2014/04 - 2017/03

    More details Close

    In many plants, the asymmetric division of the zygote sets up the apical-basal axis of the embryo. We have established the live-imaging method to visualize how the zygote polarizes after fertilization, and provided insights into the intracellular dynamics of zygote polarization in flowering plants (Kimata et al, 2016). In addition, we have revealed a framework of how maternal and paternal factors are integrated in the zygote to regulate embryo patterning (Ueda et al, 2017).

  16. 父母性因子の協働により植物初期胚の体軸が形成される分子機構の解明

    植田 美那子

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業

    Category: 新学術領域研究(研究領域提案型)

    Institution: 名古屋大学

    2014/04 - 2016/03

    More details Close

    被子植物であるシロイヌナズナにおいて、父母因子の制御下で胚発生を担うしくみを理解するべく、父母の両方から受精卵に持ち込まれて体軸形成を制御するWRKY2転写因子と父親(精細胞)からのみ持ち込まれる偽キナーゼであるSSP、母親(卵細胞)のみに由来するHDG11/12転写因子の三者に着目して研究をおこなった。それぞれの相互作用を詳細に判定するとともに、各因子の変異体や機能改変株を用いて精査した結果、これらが協調的に働くことで、WOX8遺伝子の転写が活性化され、受精卵の極性や胚の体軸が確立されることが明らかになった。具体的には、SSPによって受精卵で活性化されるMAPキナーゼ経路によってWRKY2がリン酸化されること、および、リン酸化によって活性化されたWRKY2と、HDG11/12がともにWOX8遺伝子のプロモータに直接結合してWOX8の転写を促進すること、さらに、生み出されたWOX8タンパク質が受精卵の極性化と胚のパターン形成を担うことを見出した。最終年度では、この成果をまとめ、国際誌に発表した(Ueda et. al., 2017)。また、受精卵が極性化する動態や、胚の体軸形成の詳細を理解するべく、受精卵内部や胚発生様式をライブイメージングする系を立ち上げたこの系により、受精卵が極性化して非対称分裂に至る際の細胞内動態(頂端-基部軸の獲得)や、胚内部の各部位が異なる発生運命を獲得する過程(体軸に沿ったパターン形成)の可視化に成功し、これらの成果についても、国際誌や国際学会で公表した(Gooh et. al., 2015; Kimata et. al., 2016)。

  17. 父母性因子の協働により植物初期胚の体軸が形成される分子機構の解明

    植田 美那子

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業

    Category: 新学術領域研究(研究領域提案型)

    Institution: 名古屋大学

    2012/04 - 2015/03

    More details Close

    被子植物であるシロイヌナズナにおいて、父母因子の制御下で胚発生を担う因子を網羅的に探索するべく、父母の両方から受精卵に持ち込まれて体軸形成を制御するWRKY2転写因子の下流で働く因子群を探索した。次世代シーケンサーを用いて野生型とwrky2変異体の受精卵で発現する遺伝子を網羅的に比較した結果、27の候補遺伝子を得た。これらは分泌性の低分子ペプチドや代謝酵素、主要な植物ホルモンの一つであるオーキシンの輸送や特異的なオルガネラ構造変化に関与すると推定される遺伝子など、多岐にわたっていた。これらの欠損株をストックセンターより入手し、表現型を解析したところ、うちいくつかは胚の形態に異常を示し、胚性致死となるものも見つかった。 また、父母の一方からのみ受精卵に持ち込まれるSSPとPOZについても詳細に解析を行い、これらがWRKY2と協調的に胚発生を制御することを見出した。

  18. Transcriptome analysis and laser manipulation for plant axis formation

    MINAKO Ueda

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research

    Category: Grant-in-Aid for Young Scientists (B)

    2012/04 - 2015/03

    More details Close

    We screened the downstream candidates of a specific transcription factor, which regulates the polarization of the zygote and the axis formation of the early embryo in a model plant, Arabidopsis. Based on the transcriptome analysis using next generation sequence, we identified 27 candidates, including various factors, such as the putative regulator for the organelle structure or for the transport of a major plant hormone. We analyzed the mutants of these genes, and found that several lines are defective in embryo morphology and are embryo lethal in single or multiple mutants.

  19. 細胞極性と遺伝子発現プログラムの可視化を基盤とした植物初期胚の体軸獲得機構の解明

    植田 美那子

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業

    Category: 特別研究員奨励費

    Institution: 名古屋大学

    2008 - 2010

    More details Close

    高等生物は複雑な構造をもつが、それらは全て受精卵という単一細胞に由来する。高等植物の受精卵は高度な細胞極性をもち、その不等分裂によって異なる発生運命をもつ娘細胞を生じる。この際の軸性は成熟体の頂端-基部軸に相当するが、初期発生の過程で体軸が形成される仕組みについては現在でもほとんど分かっていない。 シロイヌナズナのホメオボックス型転写因子をコードするWOX8(WUSCHEL RELATED HOMEOBOX8)遺伝子は受精卵で発現し、その不等分裂後には一方の基部側の娘細胞にのみ発現が受け継がれる。我々は、このようなWOX8の非対称発現を制御する複数のcis配列を同定し、それぞれに特異的に結合する因子を探索した。酵母oneハイブリッド法によるスクリーニングの結果、各cis配列に特異的に結合する転写因子の同定に成功し、これら転写因子群がWOX8発現のみならず、受精卵の細胞極性や初期胚の体軸形成に重要であることを見出した。 現在までに酵母twoハイブリッド法によるスクリーニングをおこない、上記の転写因子群が胚に特異的な複合体を形成して働くこと、および受精後に特異的なタンパク質調節を受けることを示唆する結果を得ている。また、これら転写因子の変異体において、受精卵を蛍光マーカーで可視化し、単離して大規模発現解析をおこなうことで、これらの下流で体軸形成を担う実働因子の網羅的な探索を進めている。

  20. 根端分裂組織の維持機構における解析

    植田 美那子

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業

    Category: 特別研究員奨励費

    Institution: 京都大学

    2002 - 2004

    More details Close

    シロイヌナズナのhalted root (hlr)突然変異体を用いて、根端分裂組織の維持機構について研究した。根端分裂組織に特徴的な細胞群である静止中心に対する分子マーカーを用い、胚発生過程と後胚発生過程(発芽後)における静止中心の性質を判定したところ、hlr突然変異体では胚発生過程に静止中心が形成されるものの、発芽直後から正常な静止中心が失われることが判明した。また、発芽後のhlr突然変異体の根端では細胞分裂パターンが異常になっていた。そこで、根端分裂組織の維持においてHLR遺伝子を必要とする組織を特定するために、静止中心を含む組織と含まない組織でHLR遺伝子を発現させた。その結果、静止中心を含む組織で発現させた場合にのみ、静止中心や細胞分裂パターンの異常が相補されることが明らかになった。HLR遺伝子はタンパク質分解に関わるプロテアソームのサブユニットをコードすることから、発芽後の根端分裂組織における静止中心の維持と細胞分裂パターンの制御には、静止中心におけるタンパク質分解制御が重要であることが示された。 また、本研究では、シロイヌナズナに一つ存在したHLR遺伝子の相同遺伝子であるHLR-LIKE PROTEIN (HLP)遺伝子についても同様の解析をおこない、HLR遺伝子とHLP遺伝子が高等植物の発生に果たす役割の差異についても研究した。HLP遺伝子を欠損した突然変異体の単離とその表現型解析、および両遺伝子の発現解析と機能解析をおこなった結果、HLR遺伝子とHLP遺伝子はともに植物の発生に寄与するが、発芽後の根端分裂組織の維持においては、HLP遺伝子ではなくHLR遺伝子が必須であることを明らかにした。現在は、この成果をまとめた論文を執筆中である。

Show all Show first 5