Details of the Researcher

PHOTO

Jun Masamune
Section
Graduate School of Science
Job title
Professor
Degree
  • 博士(情報科学)(東北大学)

  • 修士(数学)(東北大学)

e-Rad No.
50706538

Research History 5

  • 2022/04 - Present
    Tohoku University Graduate School of Science Department of Mathematics Professor

  • 2016/09 - 2022/03
    Hokkaido University Hokkaido University

  • 2013/04 - 2016/09
    Tohoku University

  • 2009/08 - 2013/03
    The Pennsylvania State University

  • 2006/08 - 2009/05
    Worcester Polytechnic Institutes Department of Mathematical Sciences

Professional Memberships 2

  • 一般社団法人 日本機械学会

  • 一般社団法人 日本数学会

Research Interests 1

  • global analysis, homogenization theory, Riemannian geometry, Riemannian manifolds, infinite graphs, Laplace-Beltrami operator, Dirichlet forms, non-local operators, heat kernels, Liouville property, Mosco convergence, H-convergence

Research Areas 1

  • Natural sciences / Geometry /

Awards 3

  1. Paper

    2023/07 The Japan Society for Industrial and Applied Mathematics

  2. 日本機械学会賞(論文)

    2021/03 日本機械学会 幾何学的特徴量に対する偏微分方程式系に基づく幾何学的特徴制約付きトポロジー最適化(積層造形における幾何学的特異点を考慮したオーバーハング制約法)

  3. 全学教育貢献賞

    2014/01 東北大学

Papers 31

  1. PDE methods for extracting normal vector fields and distance functions of shapes Peer-reviewed

    Takahiro Hasebe, Jun Masamune, Hiroshi Teramoto, Takayuki Yamada

    Tohoku Series of Mathematical Science, Springer 2026

  2. Essential self-adjointness of the Laplacian on weighted graphs: harmonic functions, stability, characterizations and capacity Peer-reviewed

    Atsushi Inoue, Sean Ku, Jun Masamune, Radoslaw K. Wojciechowski

    28 (12) 1-43 2025

  3. Construction of signed distance functions with an elliptic equation

    Takahiro Hasebe, Jun Masamune, Tomoyuki Oka, Kota Sakai, Takayuki Yamada

    arXiv 1-19 2024

  4. Removable sets and L^p-uniqueness on manifolds and metric measure spaces Peer-reviewed

    Nonlinear Analysis 234 2023

  5. Intrinsic ultracontractivity for domains in negatively curved manifolds Peer-reviewed

    Michiel van den Berg, Hiroaki Aikawa, Jun Masamune

    Computational Mathematics and Function Theory 2021/09

  6. Essential self-adjointness and the 𝐿2-Liouville property Peer-reviewed

    Bobo Hua, Jun Masamune, Radosław, K. Wojciechowski

    Journal of Fourier Analysis and Applications 27 2021/03

  7. Construction of Normal Vector Field Using the Partial Differential Equations Peer-reviewed

    Hasebe Takahiro, Kuroda Hirotoshi, Teramoto Hiroshi, Masamune Jun, Yamada Takayuki

    Transactions of the Japan Society for Industrial and Applied Mathematics 30 (3) 249-258 2020

    Publisher: The Japan Society for Industrial and Applied Mathematics

    DOI: 10.11540/jsiamt.30.3_249  

    eISSN: 2424-0982

    More details Close

    Abstract. This article proves that each solution of Yamada’s partial differential equation and thermal equation gives normal vector filed of shapes. First, each problem setting is defined and numerical solutions of the equations are provided using the Finite Element Method. Next, each theorem is given and proved.

  8. A generalized conservation property for the heat semigroup on weighted manifolds Peer-reviewed

    Jun Masamune, Marcel Schmidt

    Mathematische Annalen 377 1673-1710 2020

  9. H-compactness of elliptic operators on weighted Riemannian manifolds Peer-reviewed

    Helmer Hoppe, Jun Masamune, Stefan Neukamm

    Interdisciplinary Information Sciences 25 (2) 161-191 2019

  10. Topology optimization with geometrical feature constraints based on the partial differential equation system for geometrical features (Overhang constraints considering geometrical singularities in additive manufacturing) Peer-reviewed

    Takayuki YAMADA, Jun MASAMUNE, Hiroshi TERAMOTO, Takahiro HASEBE, Hirotoshi KURODA

    Transactions of the JSME (in Japanese) 85 (877) 19-00129 2019

    Publisher: Japan Society of Mechanical Engineers

    DOI: 10.1299/transjsme.19-00129  

    eISSN: 2187-9761

    More details Close

    This paper aims to develop a scheme for geometrical feature constraints in topology optimization for Additive Manufacturing (AM) without support structures based on the Partial Differential Equation (PDE) of geometrical shape features. To begin with, the basic concept of topology optimization and a level set-based topology optimization method are briefly described. Second, the PDE system for geometrical shape features is formulated. Here, aspects of the distribution of state variables are discussed using an analytical solution of the PDE. Based on the discussion, a function indicating the extended normal vector including geometrical singularity points is formulated. Third, geometrical requirements of product shape in AM without support structures – the so-called overhang constraint – are clarified in two-dimensions. A way of extending of the proposed concept to three-dimensional problems is also clarified. Additionally, geometrical singularities in the overhang constraint are discussed. Based on the PDE system and the clarified geometrical requirements, the overhang constraint including geometrical singularities is formulated. A topology optimization problem of the linear elastic problem is formulated considering the overhang constraint. A level set-based topology optimization algorithm is constructed where the Finite Element Method (FEM) is used to solve the governing equation of the linear elastic problem and the PDE, and to update the level set function. Finally, two-dimensional numerical examples are provided to confirm the validity and utility of the proposed method.

  11. Global properties of Dirichlet forms in terms of Green's formula Peer-reviewed

    Sebastian Haeseler, Matthias Keller, Daniel Lenz, Jun Masamune, Marcel Schmidt

    Calculus of Variations and Partial Differential Equations 56 (5) 2017/10

    DOI: 10.1007/s00526-017-1216-7  

    ISSN: 0944-2669

    eISSN: 1432-0835

  12. Endothelial monolayer permeability under controlled oxygen tension Peer-reviewed

    Kenichi Funamoto, Daisuke Yoshino, Kento Matsubara, Ioannis K. Zervantonakis, Kiyoe Funamoto, Masafumi Nakayama, Jun Masamune, Yoshitaka Kimura, Roger D. Kamm

    Integrative Biology 9 (6) 529-538 2017/06

    DOI: 10.1039/c7ib00068e  

    ISSN: 1757-9694

    eISSN: 1757-9708

  13. Probabilistic characterizations of essential self-adjointness and removability of singularities Peer-reviewed

    Michael Hinz, Seunghyun Kang, Jun Masamune

    Science Journal of Volgograd State University. Mathematics 2017

  14. Parabolicity and stochastic completeness of manifolds in terms of the Green formula Peer-reviewed

    Alexander Grigor'yan, Jun Masamune

    Journal de Mathématiques Pures et Appliquées 100 (5) 607-632 2013/11

    DOI: 10.1016/j.matpur.2013.01.015  

    ISSN: 0021-7824

    eISSN: 1776-3371

  15. A note on self-adjoint extensions of the Laplacian on weighted graphs Peer-reviewed

    Xueping Huang, Matthias Keller, Jun Masamune, Radoslaw K. Wojciechowski

    Journal of Functional Analysis 265 (8) 1556-1578 2013/10

    DOI: 10.1016/j.jfa.2013.06.004  

    ISSN: 0022-1236

  16. On the conservativeness and the recurrence of symmetric jump-diffusions Peer-reviewed

    Jun Masamune, Toshihiro Uemura, Jian Wang

    Journal of Functional Analysis 263 (12) 3984-4008 2012/12

  17. On stochastic completeness of jump processes Peer-reviewed

    Alexander Grigor'yan, Xueping Huang, Jun Masamune

    Mathematische Zeitschrift 271 (3-4) 1211-1239 2012/08

    DOI: 10.1007/s00209-011-0911-x  

    ISSN: 0025-5874

  18. On an inclusion of the essential spectrum of Laplacians under non-compact change of metric Peer-reviewed

    Jun Masamune

    Proceedings of the American Mathematical Society 140 (3) 1045-1052 2012/03

  19. Mosco-convergence and Wiener measures for conductive thin boundaries Peer-reviewed

    Jun Masamune

    Journal of Mathematical Analysis and Applications 384 504-526 2011/12

  20. Lp‐Liouville property for non‐local operators Peer-reviewed

    Jun Masamune, Toshihiro Uemura

    Mathematische Nachrichten 284 (17-18) 2249-2267 2011/12

  21. Conservation property of symmetric jump processes Peer-reviewed

    Jun Masamune, Toshihiro Uemura

    Annales de l’Institut Henri Poincaré 47 (3) 650-662 2011/04

  22. A Liouville property and its application to the Laplacian of an infinite graph Peer-reviewed

    Jun Masamune

    Contemporary Mathematics 484 103-115 2009

  23. Vanishing and conservativeness of harmonic forms of a non-compact CR manifold Peer-reviewed

    Jun Masamune

    Rendiconti Lincei Matematica e Applicazioni 19 (2) 79-102 2008/06

  24. The Serre duality theorem for a non-compact weighted CR Manifold Peer-reviewed

    Mitsuhiro Itoh, Jun Masamune, Takanari Saotome

    Proceedings of the American Mathematical Society 136 (10) 3539-3548 2008

  25. The Liouville property of unbounded fractal layers Peer-reviewed

    Maria Rosaria Lancia, Jun Masamune

    Complex Variables and Elliptic Equations 53 (4) 297-306 2008

  26. Conservative principle for differential forms Peer-reviewed

    Jun Masamune

    Rendiconti Lincei Matematica e Applicazioni 18 351-358 2007

  27. Analysis of the Laplacian of an incomplete manifold with almost polar boundary Peer-reviewed

    Rendiconti di Matematica e delle sue Applicazioni 25 109-125 2005

  28. Essential self-adjointness of a sublaplacian via heat equation Peer-reviewed

    Jun Masamune

    Communications in Partial Differential Equations 30 (11) 1595-1609 2005

    DOI: 10.1080/03605300500299935  

    ISSN: 0360-5302

  29. Discrete spectrum and Weyl's asymptotic formula for incomplete manifolds

    Jun Masamune, Wayne Rossman

    Advanced Studies in Pure Mathematics 34 2002

    Publisher: Mathematical Society of Japan

    DOI: 10.2969/aspm/03410219  

    ISSN: 0920-1971

  30. Cauchy-Riemann orbifolds Peer-reviewed

    Sorin Dragomir, Jun Masamune

    Tsukuba journal of mathematics 26 (2) 351-386 2002

  31. Essential self adjointness of Laplacians on Riemannian manifolds with fractal boundary Peer-reviewed

    Jun Masamune

    Communications in Partial Differential Equations 24 (3-4) 749-757 1999

    ISSN: 0360-5302

Show all ︎Show first 5

Misc. 4

  1. 2D34 Investigation of Permeability of Endothelial Cell Monolayer by Using Microfluidic Device with Controllability of Oxygen Tension

    MATSUBARA Kento, FUNAMOTO Kenichi, ZERVANTONAKIS Ioannis K., FUNAMOTO Kiyoe, ITO Takuya, MASAMUNE Jun, KIMURA Yoshitaka, HAYASE Toshiyuki, KAMM Roger D.

    The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME 2016.28 _2D34-1_-_2D34-5_ 2016

    Publisher: The Japan Society of Mechanical Engineers

    DOI: 10.1299/jsmebio.2016.28._2d34-1_  

    eISSN: 2424-2829

    More details Close

    Permeability changes of an endothelial cell (EC) monolayer are related to many diseases. This study evaluated permeability of the EC monolayer under normoxia and hypoxia by using fluorescent dextrans of two different molecular weights in a microfluidic device with controllability of oxygen tension. As the results, permeability of the EC monolayer increased by hypoxic exposure, and the increase of the permeability measured by fluorescent dextran of 10 kDa was smaller than that measured by fluorescent dextran of 70 kDa. The results indicated that the size-selectivity of EC monolayer became weaken under hypoxia.

  2. Dependency of polarity on the drift of Brownian motion of a compact manifold (Regularity and Singularity for Partial Differential Equations with Conservation Laws)

    Masamune Jun

    (1962) 45-49 2015/08

    ISSN: 1880-2818

  3. 1C34 Evaluation of permeability of endothelial monolayer by using hypoxia microfluidic device

    MATSUBARA Kento, FUNAMOTO Kenichi, Zervantonakis Ioannis, FUNAMOTO Kiyoe, ITO Takuya, MASAMUNE Jun, KIMURA Yoshitaka, HAYASE Toshiyuki, KAMM Roger

    The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME 2015.27 121-122 2015

    Publisher: The Japan Society of Mechanical Engineers

    DOI: 10.1299/jsmebio.2015.27.121  

    eISSN: 2424-2829

  4. B106 Measurement of permeability of endothelial monolayer under hypoxia by using microfluidic device

    MATSUBARA Kento, FUNAMOTO Kenichi, ZERVANTONAKIS Ioannis K., FUNAMOTO Kiyoe, ITO Takuya, MASAMUNE Jun, KIMURA Yoshitaka, HAYASE Toshiyuki, KAMM Roger D.

    The Proceedings of the JSME Conference on Frontiers in Bioengineering 2015.26 35-36 2015

    Publisher: The Japan Society of Mechanical Engineers

    DOI: 10.1299/jsmebiofro.2015.26.35  

    eISSN: 2424-2810

Books and Other Publications 1

  1. 感じる数学 〜ガリレイからポアンカレまで〜

    数学みえる化プロジェクト

    共立出版 2022/08

    ISBN: 9784320114784

Presentations 8

  1. Construction of Signed Distance Functions with an Elliptic Equation Invited

    Jun Masamune

    The 3rd Taiwan-Japan International Workshop on Applied Mathematics 2025/05/02

  2. Recent progress on the essential selfadjointness of the Laplacians on Riemannian manifolds and weighted graphs Invited

    HeKKSaGOn Mathematics Meeting 2024 2024/11/25

  3. Capacities and essential self adjointness of the Laplacian Invited

    正宗淳

    Geometry and Probability 2023/02/14

  4. On convergence of elliptic operators on a Riemannian manifold

    正宗淳

    The 14th SNU-HU Symposium of Mathematics 2020 2022/11/14

  5. A generalized conservation property for the heat semigroup on weighted manifolds Invited

    正宗淳

    Analysis Seminar, ドレスデン工科大学 2019/06/16

  6. A conservation property of Brownian motion with killing of a Riemannian manifold International-presentation Invited

    Jun Masamune

    Analysis and PDEs on Manifolds 2017/09/21

  7. Generalized conservation property International-presentation Invited

    Jun Masamune

    Japanese-German Open Conference on Stochastic Analysis 2017 2017/09/04

  8. H-convergence on Riemannian manifolds International-presentation Invited

    Jun Masamune

    Analysis and Geometry on Graphs and Manifolds 2017/07/31

Show all Show first 5

Research Projects 8

  1. Modelings of Shape Design Based on the Mathematics

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research

    Category: Grant-in-Aid for Transformative Research Areas (B)

    2023/04 - 2026/03

  2. 数学に基づいた構造最適化における基礎理論の構築とボトムアップ型展開

    正宗 淳

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 学術変革領域研究(B)

    Category: 学術変革領域研究(B)

    Institution: 東北大学

    2023/04 - 2026/03

  3. 一般のリーマン多様体のラプラシアンの自己共役性ならびにリュービル性

    正宗 淳

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 基盤研究(C)

    Category: 基盤研究(C)

    Institution: 北海道大学

    2018/04 - 2024/03

    More details Close

    多様体のラプラシアンの本質的自己共役性が局所的性質をもつことを明らかにした.本研究課題の前々年度の研究成果により,ある状況下では本質的自己共役性は特異集合の容量で特徴付されることが分かった.その容量を決定する1-調和関数は空間全体の情報を持っており局所性を持たないため,多様体のラプラシアンの本質的自己共役性が局所的性質をもつことは不明であった.そこで部分積分の境界項が消えるという本質的自己共役性の特徴付を用いて,多様体のラプラシアンの本質的自己共役性が局所的性質であることを証明した.この結果を具体的に述べると「リーマン多様体がそれらの共通部分がその境界になるように二つの境界付き多様体に分解され,また,その境界がコンパクトであるならば,全体の多様体のラプラシアンが本質的自己共役であることと,それら部分多様体のノイマン境界条件をもつラプラシアンが共に本質的自己共役であることは同値である」である.この研究とは別に,リーマン多様体にレイリッヒの埋め込み定理が成立するような多様体を付け加えても,もしくはリーマン多様体からレイリッヒの埋め込み定理が成立する部分多様体を取り除いてもラプラシアンの本質的スペクトルが変わらないことを証明した.これは本質的スペクトルに関する新たな不変量の発見である.コンパクト作用素の摂動について本質的スペクトルは不変量になっていることはよく知られているが,今回の研究成果により空間自体が変形しても同様なことが成立することが分かった.これと先に述べた本質的自己共役性を組み合わせることで,本質的自己共役性をL^2リュービル性を用いて証明するレシピが完成した.この研究成果については既にいくつかのセミナーで報告をした.

  4. Consistent method for optimal design and manufacturing based on the unified geometrical feature evaluation by the partial differential equation

    Yamada Takayuki

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)

    Category: Grant-in-Aid for Scientific Research (B)

    2019/04/01 - 2022/03/31

    More details Close

    In this study, the geometric constraints required from the manufacturing process are formulated by using partial differential equations. These partial differential equations are called fictitious physical model because it is a fictitious field introduced to represent manufacturability. We also integrated it with the topology optimization method to create a new design method that integrates design and production. Furthermore, by considering assemblability, we proposed a method that also allows topology optimization of mechanical structures composed of multiple parts.

  5. 複雑領域のポテンシャル解析の深化―非線形PDEと理想境界への応用

    相川 弘明, 志賀 啓成, 倉田 和浩, 須川 敏幸, 平田 賢太郎, 鈴木 紀明, 正宗 淳, 利根川 吉廣, 木上 淳, 加須栄 篤, 堀田 一敬, 野瀬 敏洋

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 基盤研究(A)

    Category: 基盤研究(A)

    2017/04/01 - 2021/03/31

    More details Close

    Intrinsic ultracontractivity を応用して,Lipschitz領域やJohn領域をベースにするシリンダー上の熱方程式の優解の可積分性を与え,正値優調和関数の可積分性を放物型に拡張した.境界条件付きの一般化された平均曲率流であるBrakke流の時間大域解存在を証明した.非線形無限ネットワークのラプラシアンを研究し,リウヴィユ性,カシミンスキー条件,Omori-Yauタイプの弱最大値原理などの同値性や正値優調和関数の最小増大度,具体的判定条件について成果を得た.パターン形成に関わるFitzHugh反応拡散系のヘテロクリニック定常解の構成とエネルギー漸近展開を行なった. 3波相互作用を持つ非線形シュレディンガー方程式系に現れる変分問題のエネルギー最小解の存在とその漸近挙動に関する知見を得た.領域の境界の一様完全性や領域の一様性の新しいポテンシャル論的特徴づけを得た.有界Lipschitz領域において,半線形楕円型方程式の正値解に対する境界Harnack原理を,Greenポテンシャルの評価と反復法を用いて示した.孤立境界特異点をもつ正値解の漸近挙動および除去可能性について考察した.自己相似集合の Ahlfors regular conformal dimension と対応する無限グラフの parabolic index の関係および自己相似集合上への p-energy の構成について研究し,parabolic index とAhlfors regular conformal dimension の間の不等式などを示した.ポテンシャル付きの二階楕円型作用素の保存則を定式化して,対応するカシミンスキー・テストを証明した.均質化法のH収束理論を多様体に拡張し,作用素の収束を実現するリーマン計量ならびに複雑な空間への収束する多様体の族の変形理論を構築した.

  6. Stochastic homogenization for uncertainty quantification in multiscale analysis

    Masamune Jun

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)

    Category: Grant-in-Aid for Scientific Research (C)

    Institution: Hokkaido University

    2016/07/19 - 2019/03/31

    More details Close

    We established a homogenization theory, more precisely, the H-convergence theory on general Riemannian manifolds. The main theoretical result in the project was to show a compactness result for a family of diffusion coefficients and that H-convergence implies Mosco convergence. As a consequence, there is a weak converging sequence of Brownian motions provided the tightness. As applications of homogenization theory, we constructed a mathematical model for micro-fibers and analyzed it, and, discussed the results obtain by the averaging methods and homogenization theory. We also studied the Carbon Fiber Reinforced Polymer Composites (CFRP) using the homogenization theory and numerical analysis. In particular, we proposed several new methods to evaluate the strengths of CFRP and conducted tests using numerical methods combined with homogenization theory.

  7. Global properties and the theory of convergences of diffusion processes of measure spaces

    Masamune Jun

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)

    Category: Grant-in-Aid for Scientific Research (C)

    2014/04/01 - 2018/03/31

    More details Close

    In this research project, we aim to develop the global analysis of diffusion processes on measure spaces associated with some Markov processes. The main results in this projects are (1) conservation property and recurrence of general Markov processes in terms of Green's formula (2) Characterizations of Liouville type problems of Riemannian manifolds and graphs (3) Generalized conservation property of Brownian motion with killing inside and its characterizations (4) Probabilisitic characterization of the essential selfadjointness of the Laplacian of Euclidean space removed a compact set.

  8. 測度空間における拡散現象の大域解析

    正宗 淳

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 研究活動スタート支援

    Category: 研究活動スタート支援

    Institution: 東北大学

    2013/08/30 - 2015/03/31

    More details Close

    本年度は,以下の1,2,3の研究を行った. 1.測度空間上で,ディリクレ形式に対してグリーンの公式を定式化し,さらに,マルコフ過程の保存性と再帰性をグリーンの公式による特徴付けを行った.これらの性質は空間の無限遠の大きさと密接な関係があることが知られている.そこで,本研究では,無限遠が小さければ,ある関数のクラスに対してはグリーンの公式の境界項が消えると考え,保存性と再帰性に対応する,それぞれの関数のクラスを完全に決定した.さらに,これらの関数のクラスを多様体,グラフ,量子グラフの場合に詳しく調べた.本研究は,D. Lenz(イエナ・ドイツ)との共同研究であり,現在執筆中である. 2.測度空間の作用素の拡張の問題を,特に重要な例である,離散シュレディンガー作用素に対して調べた.とりわけ,Colin de Verdiereらによる最近の重要な結果を拡張した.また,離散シュレディンガー作用素の基底状態変換公式を一般の局所有限な無限グラフに拡張し,両方の符号を持つポテンシャルを持つ離散シュレディンガー作用素の正定値性を得た. 3.境界付きコンパクト・リーマン多様体上で定義された,ドリフトとポテンシャルを持つ二階の微分作用素の解の挙動を調べた.解の一意性と正則性を示し,さらに,正定値性とマルコフ性が成立する為のポテンシャルおよび第三種境界条件を特徴付けた.本研究は,M. Bordoni(ローマ・イタリア)とS. Gallot(グレノーブル・フランス)の共同研究であり,現在執筆中である.

Show all Show first 5

Social Activities 2

  1. NPO 数学みえる化プロジェクト

    2023/04 - Present

  2. 数学展「感じる数学 Tangible Math 〜ガリレイからポアンカレまで〜」

    2022/07/30 - 2022/09/25

Academic Activities 8

  1. Journal of Tohoku Mathematical Journal(編集委員)

    2023 - Present

    Activity type: Scientific advice/Review

  2. Journal of Theoretical Probability(編集委員)

    2023 - Present

    Activity type: Scientific advice/Review

  3. ブラソフ方程式とマックスウェル方程式、プラズマの数理 III(組織委員)

    東北大学理学研究科数学専攻

    2025/06/03 - 2025/06/03

    Activity type: Academic society, research group, etc.

  4. 2024 Open German-Japanese Conference on Stochastic Analysis and Applications(Scientific Committee)

    2024/09/09 - 2024/09/13

    Activity type: Academic society, research group, etc.

  5. ブラソフ方程式とマックスウェル方程式、プラズマの数理 II(組織委員)

    東北大学理学研究科数学専攻

    2024/06/28 - 2024/06/29

    Activity type: Academic society, research group, etc.

  6. ブラソフ方程式とマックスウェル方程式、プラズマの数理(組織委員)

    東京大学

    2024/03/27 - 2024/03/29

    Activity type: Academic society, research group, etc.

  7. RIMS合宿型セミナー「均質化法と非局所型作用素」(代表)

    北海道、ニセコ

    2023/08/07 - 2023/08/11

    Activity type: Academic society, research group, etc.

  8. 離散微分型式と均質化法の融合による異方性を持つ場の数値計算手法の開発と産業への応用

    九州大学マス・フォア・インダストリ研究所

    2023/05/12 - 2023/05/14

    Activity type: Academic society, research group, etc.

Show all Show first 5