Details of the Researcher

PHOTO

Kei Funano
Section
Graduate School of Information Sciences
Job title
Associate Professor
Degree
  • 博士(理学)(東北大学)

  • 修士(理学)(東北大学)

Profile

多様体やEuclid空間の領域上のラプラシアンの固有値に関する研究を測度の集中の観点から行ってきました。Euclid空間上の領域、例え2次元に限っても今まで認知されずに残っている未解決でかつ面白い問題がまだまだ沢山あります。

応用面にも興味を持っています。

Research Interests 5

  • 固有値問題

  • 凸幾何学

  • 測度の集中

  • spectral geometry

  • Geometry of Banach spaces

Research Areas 1

  • Natural sciences / Geometry /

Papers 17

  1. Two extremum problems for Neumann eigenvalues Peer-reviewed

    Lorenzo Cavallina, Kei Funano, Antoine Henrot, Antoine Lemenant, Ilaria Lucardesi, Shigeru Sakaguchi

    J. Anal. Math. to appear 2024/08

  2. A note on domain monotonicity for the Neumann eigenvalues of the Laplacian Peer-reviewed

    Kei Funano

    Illinois Journal of Mathematics 67 (4) 677-686 2023/12/01

    Publisher: Duke University Press

    DOI: 10.1215/00192082-10972651  

    ISSN: 0019-2082

  3. A universal inequality for Neumann eigenvalues of the Laplacian on a convex domain in Euclidean space Peer-reviewed

    Kei Funano

    Canadian Mathematical Bulletin 67 (1) 222-226 2023/09/19

    Publisher: Canadian Mathematical Society

    DOI: 10.4153/s0008439523000735  

    ISSN: 0008-4395

    eISSN: 1496-4287

    More details Close

    Abstract We obtain a new upper bound for Neumann eigenvalues of the Laplacian on a bounded convex domain in Euclidean space. As an application of the upper bound, we derive universal inequalities for Neumann eigenvalues of the Laplacian.

  4. Upper bounds for higher-order Poincaré constants Peer-reviewed

    Kei Funano, Yohei Sakurai

    Transactions of the American Mathematical Society 373 (6) 4415-4436 2020/03/09

    Publisher: American Mathematical Society (AMS)

    DOI: 10.1090/tran/8049  

    ISSN: 0002-9947

    eISSN: 1088-6850

    More details Close

    <p>Here we introduce higher-order Poincaré constants for compact weighted manifolds and estimate them from above in terms of subsets. These estimates imply upper bounds for eigenvalues of the weighted Laplacian and the first nontrivial eigenvalue of the -Laplacian. In the case of the closed eigenvalue problem and the Neumann eigenvalue problem these are related to the estimates obtained by Chung-Grigor’yan-Yau and Gozlan-Herry. We also obtain similar upper bounds for Dirichlet eigenvalues and multi-way isoperimetric constants. As an application, for manifolds with boundary of nonnegative dimensional weighted Ricci curvature, we give upper bounds for inscribed radii in terms of dimension and the first Dirichlet Poincaré constant.</p>

  5. Concentration of eigenfunctions of the Laplacian on a closed Riemannian manifold Peer-reviewed

    Kei Funano, Yohei Sakurai

    Proceedings of the American Mathematical Society 147 (7) 3155-3164 2019/03/05

    Publisher: American Mathematical Society (AMS)

    DOI: 10.1090/proc/14430  

    ISSN: 0002-9939

    eISSN: 1088-6826

  6. MACROSCOPIC SCALAR CURVATURE AND AREAS OF CYCLES Peer-reviewed

    Hannah Alpert, Kei Funano

    GEOMETRIC AND FUNCTIONAL ANALYSIS 27 (4) 727-743 2017/07

    DOI: 10.1007/s00039-017-0417-8  

    ISSN: 1016-443X

    eISSN: 1420-8970

  7. ESTIMATES OF EIGENVALUES OF THE LAPLACIAN BY A REDUCED NUMBER OF SUBSETS Peer-reviewed

    Kei Funano

    ISRAEL JOURNAL OF MATHEMATICS 217 (1) 413-433 2017/03

    DOI: 10.1007/s11856-017-1453-7  

    ISSN: 0021-2172

    eISSN: 1565-8511

  8. Applications of the 'Ham Sandwich Theorem' to Eigenvalues of the Laplacian Peer-reviewed

    Kei Funano

    Analysis and Geometry in Metric Spaces 4 (1) 317-325 2016

    Publisher: De Gruyter Open Ltd

    DOI: 10.1515/agms-2016-0015  

    ISSN: 2299-3274

  9. Concentration, Ricci Curvature, and Eigenvalues of Laplacian Peer-reviewed

    Kei Funano, Takashi Shioya

    Geometric and Functional Analysis 23 (3) 888-936 2013/06

    DOI: 10.1007/s00039-013-0215-x  

    ISSN: 1016-443X

  10. TWO INFINITE VERSIONS OF THE NONLINEAR DVORETZKY THEOREM Peer-reviewed

    Kei Funano

    PACIFIC JOURNAL OF MATHEMATICS 259 (1) 101-108 2012/09

    DOI: 10.2140/pjm.2012.259.101  

    ISSN: 0030-8730

  11. RATE OF CONVERGENCE OF STOCHASTIC PROCESSES WITH VALUES IN R-TREES AND HADAMARD MANIFOLDS Peer-reviewed

    Kei Funano

    OSAKA JOURNAL OF MATHEMATICS 47 (4) 911-920 2010/12

    ISSN: 0030-6126

  12. Concentration of maps and group actions Peer-reviewed

    Kei Funano

    GEOMETRIAE DEDICATA 149 (1) 103-119 2010/12

    DOI: 10.1007/s10711-010-9470-2  

    ISSN: 0046-5755

  13. Exponential and Gaussian concentration of 1-Lipschitz maps Peer-reviewed

    Kei Funano

    MANUSCRIPTA MATHEMATICA 130 (3) 273-285 2009/11

    DOI: 10.1007/s00229-009-0280-5  

    ISSN: 0025-2611

  14. Central and L-p-concentration of 1-Lipschitz maps into R-trees Peer-reviewed

    Kei Funano

    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN 61 (2) 483-506 2009/04

    DOI: 10.2969/jmsj/06120483  

    ISSN: 0025-5645

  15. CONCENTRATION OF 1-LIPSCHITZ MAPS INTO AN INFINITE DIMENSIONAL l(p)-BALL WITH THE l(q)-DISTANCE FUNCTION Peer-reviewed

    Kei Funano

    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY 137 (7) 2407-2417 2009

    DOI: 10.1090/S0002-9939-09-09873-6  

    ISSN: 0002-9939

  16. Estimates of Gromov's box distance Peer-reviewed

    Kei Funano

    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY 136 (8) 2911-2920 2008

    DOI: 10.1090/S0002-9939-08-09416-1  

    ISSN: 0002-9939

  17. Observable concentration of mm-spaces into spaces with doubling measures Peer-reviewed

    Kei Funano

    GEOMETRIAE DEDICATA 127 (1) 49-56 2007/06

    DOI: 10.1007/s10711-007-9156-6  

    ISSN: 0046-5755

Show all ︎Show first 5

Misc. 1

  1. 「高次元の幾何学」 ~幾何学におけるラムゼー型定理~

    船野敬

    数理科学 54 (12) 27-34 2016

    Publisher: サイエンス社

    ISSN: 0386-2240

Presentations 23

  1. ラプラシアンのノイマン固有値の普遍不等式

    船野敬

    日本数学会秋季総合分科会 2024/09/05

  2. Domain monotonicity, its converse, and reverse Invited

    Kei Funano

    The Mathematics of Shapes 2024/08/30

  3. Some upper bound estimate of eigenvalues of Laplacian on Alexandrov spaces of CD(0,\infty) International-presentation Invited

    Kei Funano

    Seminar with E. Milman 2014/09/30

  4. リーマン多様体上のラプラシアンの固有値と多重等周定数について Invited

    船野 敬

    日本数学会春季分科会 2014/03/16

  5. Eigenvalues of Laplacian and Multi-way isoperimetric constants on Riemannian manifolds International-presentation Invited

    Kei Funano

    he Ninth Geometry Conference for the friendship between Japan and China 2013/09/04

  6. Concentration, separation, and eigenvalues of Laplacian International-presentation Invited

    Kei Funano

    Connections for women on the concentration of measure phenomenon 2013/03/06

  7. ラプラシアンの固有値の間の数値的普遍不等式について Invited

    船野 敬

    リーマン幾何学と幾何解析 2013/02/22

  8. 無限版とl_p版非線形ドボレツキーの定理について

    多様体の微分方程式 2012/11/15

  9. 無限版とl_p版非線形ドボレツキーの定理について

    幾何学阿蘇研究集会 2012/09/25

  10. 無限版非線形ドボレツキーの定理について

    幾何学シンポジウム 2012/08/27

  11. Infinite and $\ell_p$ versions of nonlinear Dvoretzky's theorem

    Group actions and K-theory 2012/03/14

  12. 無限版非線形ドボレツキ―の定理について

    測地線及び関連する諸問題 2012/01/08

  13. Concentration of measure phenomenon and eigenvalues of Laplacian

    5th International Conference on Stochastic Analysis and its Applications 2011/09/06

  14. 測度の集中現象とラプラシアンの固有値の挙動 --その後の進展--

    測地線及び関連する諸問題 2011/01/09

  15. Concentration of maps and group actions

    Workshop on Concentration phenomenon, transformation groups and Ramsey theory 2010/10/12

  16. Concentration of measure phenomenon and eigenvalues of Laplacian

    Workshop on Asymptotic Geometric Analysis and Convexity 2010/09/14

  17. Concentration of measure phenomenon and eigenvalues of Laplacian

    the 34th Conference on Stochastic Processes and their Applications 2010/09/07

  18. 測度の集中現象とラプラシアンの固有値の挙動

    幾何学阿蘇研究集会 2010/08/31

  19. 測度の集中現象とラプラシアンの固有値の挙動

    幾何学シンポジウム 2010/08/07

  20. Eigenvalues of Laplacian and measure concentration

    リーマン幾何と幾何解析 2010/02/19

  21. Rate of convergence of stochastic processes with values in R-trees and Hadamard manifolds

    International Workshop on "Concentration, Functional Inequalities and Isoperimetry" 2009/11/01

  22. Concentration of 1-Lipschitz maps and Levy group actions

    Probability and Geometry 2008/09/16

  23. Concentration of 1-Lipschitz maps and group actions

    Probabilistic approach to geometry 2008/08/05

Show all Show first 5

Research Projects 6

  1. `Nice' partitions and eigenvalues of the Laplacian

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research

    Category: Grant-in-Aid for Young Scientists (B)

    Institution: Tohoku University

    2017/04/01 - 2023/03/31

  2. Geometry of partial differential equations and inverse problems

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research

    Category: Grant-in-Aid for Scientific Research (B)

    Institution: Tohoku University

    2018/04/01 - 2022/03/31

  3. Analysis of elliptic operators and its applications to Geometric Function Theory

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research

    Category: Grant-in-Aid for Scientific Research (B)

    Institution: Tohoku University

    2017/04/01 - 2022/03/31

  4. Applications of the concentration of measure phenomenon to analysis and geometry of Laplacian

    Funano Kei

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research

    Category: Grant-in-Aid for Young Scientists (B)

    2013/04/01 - 2017/03/31

    More details Close

    I obtained some upper bound estimates of eigenvalues of the Laplacian on closed Riemannian manifolds of nonnegative Ricci curvature. These estimates state that one can estimate eigenvalues in terms of infomation of finite number of subsets of the manifold. The method I used in the proof is the theory of optimal transportation. I also studied domain monotonicity/reverse domain monotonicity for Neumann eigenvalues of the Laplacian on convex domains in a Euclidean space. Furthermore I got nontrivial universal inequalities among eigenvalues of the Laplacian. In the proof I used the ham sandwich theorem coming from algebraic topology. These studies are valuable.

  5. Geometric application of concentration of measure phenomenon

    FUNANO Kei, SHIOYA Takashi

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research

    Category: Grant-in-Aid for Research Activity Start-up

    Institution: Kyoto University

    2011 - 2012

    More details Close

    We studied properties of eigenavalues of Laplacian on closed Riemannian manifolds of nonnegative Ricci curvature. One of our achievements is the k-th non-trivial eigenvalue of Laplacian on such manifolds is bounded by the first eigenvalue times universal constant depending only on k. In our proof, we obtained a stability result of curvature-dimension condition under concentration topology. This result extends the known-result that cuvature-dimension condition is stable under the measured Gromov-Hausdorff topology.

  6. 測度距離空間の収束理論について

    船野 敬

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業

    Category: 特別研究員奨励費

    Institution: 東北大学

    2007 - 2008

    More details Close

    本年度は京都大学の塚本真輝氏とA.Gournay氏の手法を用いて,無限次元距離空間への1-Lipschitz写像の集中現象について研究した.まず,次のような驚くべき結果を示した.無限次元$\ell^p$単位球に$\ell^q$距離をいれた距離空間に対しては,1-Lipschitz関数の集中現象とその空間への1-Lipschitz写像の集中現象が同値となることを示した.但しp<qとしている.このことはpがq以下の場合は一般には成立しない奇妙な現象である.私はまた値域の空間が非常に大きくて,定義域の空間がある種の等質性を持り直径が大きいならば,1-Lipschitz写像の集中現象が起きないことを示した.このことを用いると上述の結果は上述の無限次元空間はそんなに大きくないことを示唆している. 私はまた写像の集中現象の応用について研究した.特にcompact位相群やLevy群と呼ばれる位相群の作用への応用について結果を得た.Levy群はGromovとV.Milmanによって1983年に導入された群で,Haar確率測度に関してLevy族(1-Lipschitz関数の集中現象を起こす測度距離空間の列)となっているcompact部分群によって近似される位相群である.沢山の例が知られている.GromovとMilmanはLevy群がcompact距離空間に連続に作用しているときに,固定点を持つことを示した.私の研究ではcompactとは限らない距離空間に対するLevy群の作用を扱った.具体的には,樹木空間,Hadamard多様体,距離graph,二倍条件を満たす距離空間,無限次元$\ell^p$単位球に$\ell^q$距離をいれた距離空間(p<q)に対する作用について研究した.私のこれまでの研究で得られていた結果を用いてGromovとMilmanの議論を精密化することによって次の結果を得た.Levy群が上述の距離空間に有界かつ一様連続写像として作用するとき,そのLevy群のcompact部分群に対してそのOrbitの列で直径が0に収束するものがとれる大雑把にはこのことは大体固定点を持つことを意味している.二倍条件を満たす距離空間の場合はGromovとMilmanによるLevy群のcompact距離空間への連続作用の固定点定理の拡張となっている.

Show all Show first 5