研究者詳細

顔写真

ジヤン リンダ
Zhang Linda
Zhang Linda
所属
高等研究機構学際科学フロンティア研究所 新領域創成研究部学際基盤研究分野 物質材料・エネルギー研究領域
職名
助教
学位
  • Ph.D.(University of Stuttgart)

  • M.S.(Shanghai Jiao Tong University)

e-Rad 研究者番号
90992355

経歴 3

  • 2023年5月 ~ 継続中
    東北大学 学際科学フロンティア研究所

  • 2020年8月 ~ 2023年4月
    Max Planck Institute for Inteligent Systems Postdoctoral researcher

  • 2016年2月 ~ 2020年7月
    Max Planck Institute for Inteligent Systems Doctoral researcher

学歴 4

  • University Stuttgart Chemistry

    2016年5月 ~ 2020年7月

  • Max Planck Institute for Intelligent Systems

    2016年2月 ~ 2020年7月

  • Shanghai Jiao Tong Univeristy School of materials science and engineering

    2012年9月 ~ 2015年6月

  • Tianjin Univeristy School of materials science and engineering

    2008年9月 ~ 2012年6月

委員歴 1

  • 第19回材料-水素系国際シンポジウム (MH2026) 学術技術部会

    2024年5月 ~ 継続中

所属学協会 4

  • 日本化学会

    2024年5月 ~

  • American Chemical Society

  • 日本女性科学者の会

  • 日本金属学会

研究キーワード 5

  • Materials physics

  • Isotope separation

  • Gas separation and purification

  • Hydrogen storage

  • Porous materials

研究分野 5

  • ナノテク・材料 / 無機物質、無機材料化学 /

  • ナノテク・材料 / グリーンサステイナブルケミストリー、環境化学 /

  • ナノテク・材料 / 無機・錯体化学 /

  • ナノテク・材料 / ナノ材料科学 /

  • ナノテク・材料 / 構造材料、機能材料 /

受賞 2

  1. Early career editor

    2025年1月 Frontiers of Chemical Science and Engineering, Springer Nature

  2. Best Poster Award

    2023年12月 The 7th Symposium for the CRCMS

論文 23

  1. Isotopologue-induced structural dynamics of a triazolate metal-organic framework for efficient hydrogen isotope separation 査読有り

    Linda Zhang, Richard Röß-Ohlenroth, Vanessa K. Peterson, Samuel G. Duyker, Cheng Li, Jhonatan Luiz Fiorio, Jan-Ole Joswig, Robert Dinnebier, Dirk Volkmer, Michael Hirscher

    Nature Communications 2025年7月1日

    DOI: 10.1038/s41467-025-61107-3  

  2. Hydrogen isotope adsorption and separation in ion-exchanged ZSM-25 zeolites

    Zhi Yu, Kaifei Chen, Jianing Yang, Yalou Guo, Jia Ming Goh, Jianan He, Linda Zhang, Penny Xiao, Paul A. Webley, Gang Kevin Li

    Chemical Engineering Journal 2025年6月

    DOI: 10.1016/j.cej.2025.162769  

  3. Unraveling the Complexity of Divalent Hydride Electrolytes in Solid‐State Batteries via a Data‐Driven Framework with Large Language Model

    Qian Wang, Fangling Yang, Yuhang Wang, Di Zhang, Ryuhei Sato, Linda Zhang, Eric Jianfeng Cheng, Yigang Yan, Yungui Chen, Kazuaki Kisu, Shin‐ichi Orimo, Hao Li

    Angewandte Chemie International Edition 2025年4月25日

    DOI: 10.1002/anie.202506573  

    ISSN:1433-7851 1521-3773

    詳細を見る 詳細を閉じる

    <jats:title>Abstract</jats:title><jats:p>Solid‐state electrolytes (SSEs) are essential for next‐generation energy storage technologies. However, the exploration of divalent hydrides is hindered by complex ionic migration mechanisms and reliance on “trial‐and‐error” methodologies. Conventional approaches, which focus on individual materials and predefined pathways, remain inefficient. Herein, we present a data‐driven artificial intelligence framework that integrates a comprehensive SSE database with large language models and ab initio metadynamics (MetaD) simulations to accelerate the discovery of hydride SSEs. Our study reveals that hydrides incorporating neutral molecules have great potential, with MetaD revealing novel “two‐step” ion migration mechanisms. Predictive models developed using both experimental and computational data accurately forecast ionic migration activation energies for various types of hydride SSEs. In particular, some SSEs with carbon‐containing neutral molecules exhibit notably low activation energy, with barriers as low as 0.62 eV. This framework enables the rapid identification of optimized SSE candidates and establishes a transformative tool for advancing sustainable energy storage technologies.</jats:p>

  4. Cloud Synthesis: A Global Close-Loop Feedback Powered by Autonomous AI-Driven Catalyst Design Agent

    Di Zhang, Xue Jia, Heng Liu, Yuhang Wang, Songbo Ye, Qiuling Jiang, Yuan Wang, Linda Zhang, Li Wei, Weijie Yang, Haoxiang Xu, Daojian Cheng, Yusuke Hashimoto, Takaaki Tomai, Hao Li

    2024年12月30日

    DOI: 10.26434/chemrxiv-2024-jsqqn  

  5. Synergistic Effects of Ruthenium and Zinc Active Sites Fine Tune the Electronic Structures of Augmented Electrocatalysis 査読有り

    Tingyu Lu, Jing Li, Jingwen Ying, Ningkang Peng, Linda Zhang, Yizhou Zhang, Di Zhang, Songbo Ye, Lin Xu, Dongmei Sun, Hao Li, Yanhui Gu, Yawen Tang

    Advanced Functional Materials 2024年12月23日

    DOI: 10.1002/adfm.202422594  

    ISSN:1616-301X 1616-3028

    詳細を見る 詳細を閉じる

    <jats:title>Abstract</jats:title><jats:p>As the demand for cleaner energy becomes a paramount objective of sustainable development, the advancement of cutting‐edge engineered materials for a wide range of applications becomes increasingly vital. Tailoring catalyst properties through precise design and electronic state tuning is essential for adapting these materials to large‐scale energy applications. Given this, an effective electronic fine‐tuning (EFT) strategy is presented to optimize the electronic structures of single‐atom Zn site and Ru species, synergistically enhancing the both electrocatalytic oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). Benefiting from the interaction between Ru species anchored on hierarchically layered nanosheets and isolated Zn atoms (Ru@Zn‐SAs/N‐C), the catalyst exhibits superior ORR and HER activities compared to the benchmark Pt/C catalyst. X‐ray absorption spectroscopy and density functional theory (DFT) calculations confirm a novel EFT effect between a single Zn site and Ru species, that enables the Ru@Zn‐SAs/N‐C approaches the optimal scaling relation between <jats:sup>*</jats:sup>OOH and <jats:sup>*</jats:sup>OH, breaking the universal ORR scaling limitation. Additionally, the optimal G<jats:sub>H*</jats:sub> value positions Ru@Zn‐SAs/N‐C near the apex of the theoretical HER volcano model. This work provides an innovative avenue for regulating the electronic localization of catalytic active centers by virtue of carbon substrate and offers valuable insights for designing high‐efficiency electrocatalysts.</jats:p>

  6. Divergent Activity Shifts of Tin‐Based Catalysts for Electrochemical CO2 Reduction: pH‐Dependent Behavior of Single‐Atom Versus Polyatomic Structures 査読有り

    Yuhang Wang, Di Zhang, Bin Sun, Xue Jia, Linda Zhang, Hefeng Cheng, Jun Fan, Hao Li

    Angewandte Chemie International Edition 2024年12月17日

    DOI: 10.1002/anie.202418228  

    ISSN:1433-7851 1521-3773

    詳細を見る 詳細を閉じる

    <jats:title>Abstract</jats:title><jats:p>Tin (Sn)‐based catalysts have been widely studied for electrochemical CO<jats:sub>2</jats:sub> reduction reaction (CO<jats:sub>2</jats:sub>RR) to produce formic acid, but the intricate influence of the structural sensitivity in single‐atom Sn (e.g., Sn−N−C) and polyatomic Sn (e.g., SnO<jats:sub>x</jats:sub> and SnS<jats:sub>x</jats:sub>; <jats:italic>x</jats:italic>=1,2) on their pH‐dependent performance remains enigmatic. Herein, we integrate large‐scale data mining (with &gt;2,300 CO<jats:sub>2</jats:sub>RR catalysts from available experimental literature during the past decade), ab initio computations, machine learning force field accelerated molecular dynamic simulations, and pH‐field coupled modelling to unravel their pH dependence. We reveal a fascinating contrast: the electric field response of the binding strength of *OCHO on Sn−N<jats:sub>4</jats:sub>−C and polyatomic Sn exhibits opposite behaviors due to their differing dipole moment changes upon *OCHO formation. Such response leads to an intriguing opposite pH‐dependent volcano evolution for Sn−N<jats:sub>4</jats:sub>−C and polyatomic Sn. Subsequent experimental validations of turnover frequency and current density under both neutral and alkaline conditions well aligned with our theoretical predictions. Most importantly, our analysis suggests the necessity of distinct optimization strategies for *OCHO binding energy on different types of Sn‐based catalysts.</jats:p>

  7. Hydrogen-Stabilized ScYNdGd Medium-Entropy Alloy for Hydrogen Storage 査読有り

    Mateusz Balcerzak, Jéssica Bruna Ponsoni, Hilke Petersen, César Menéndez, Jan Ternieden, Linda Zhang, Frederik Winkelmann, Kondo-Francois Aguey-Zinsou, Michael Hirscher, Michael Felderhoff

    Journal of the American Chemical Society 2024年2月28日

    DOI: 10.1021/jacs.3c11943  

  8. Controlling nanocluster growth through nanoconfinement: the effect of the number and nature of metal–organic framework functionalities 査読有り

    James King, Zhipeng Lin, Federica Zanca, Hui Luo, Linda Zhang, Patrick Cullen, Mohsen Danaie, Michael Hirscher, Simone Meloni, Alin M. Elena, Petra Á. Szilágyi

    Physical Chemistry Chemical Physics 2024年

    出版者・発行元: Royal Society of Chemistry (RSC)

    DOI: 10.1039/d4cp02422b  

    ISSN:1463-9076

    eISSN:1463-9084

    詳細を見る 詳細を閉じる

    Synthesis of active nanoclusters through confinement in pores of functional frameworks is an attractive approach as it allows for geometry control and potential surface-chemistry modification simultaneously.

  9. A squarate-pillared titanium oxide quantum sieve towards practical hydrogen isotope separation 国際誌 国際共著

    Qingqing Yan, Jing Wang, Linda Zhang, Jiaqi Liu, Mohammad Wahiduzzaman, Nana Yan, Liang Yu, Romain Dupuis, Hao Wang, Guillaume Maurin, Michael Hirscher, Peng Guo, Sujing Wang, Jiangfeng Du

    Nature Communications 2023年7月13日

    DOI: 10.1038/s41467-023-39871-x  

  10. Nanoporous adsorbents for hydrogen storage 国際誌 国際共著

    Michael Hirscher, Linda Zhang, Hyunchul Oh

    Applied Physics A 2023年2月

    DOI: 10.1007/s00339-023-06397-4  

    ISSN:0947-8396 1432-0630

    詳細を見る 詳細を閉じる

    <jats:title>Abstract</jats:title><jats:p>Hydrogen storage in absorbents as activated carbons has been rarely investigated; however, about 25 years ago, the development of new nanomaterials, initiated by Iijima’s discovery of carbon microtubules, started new hopes. Unfortunately, initial results on high hydrogen uptake in carbon nanotubes at ambient conditions could not be independently reproduced; however, at cryogenic conditions, these novel nanomaterials just behaved as activated carbons with an uptake proportional to the surface area. Shortly after, the development of coordination polymers with permanent porosity opened a new route to nanoporous materials with ultra-high internal surfaces. Mainly metal–organic frameworks (MOFs) have been attracting a great deal of attention in recent years, as very high gravimetric hydrogen capacities can be achieved at 77 K. Cryogenic storage by physisorption of hydrogen molecules will safely operate at low pressures, is fully reversible, and possesses fast kinetics. This mini-review shows the rapid development in this field over the past 25 years. Exemplarily, the main focus is on results obtained in the hydrogen storage laboratory in Stuttgart and their connection to Applied Physics A.</jats:p>

  11. Fundamentals of hydrogen storage in nanoporous materials 国際誌 国際共著

    Linda Zhang, Mark D Allendorf, Rafael Balderas-Xicohténcatl, Darren P Broom, George S Fanourgakis, George E Froudakis, Thomas Gennett, Katherine E Hurst, Sanliang Ling, Chiara Milanese, Philip A Parilla, Daniele Pontiroli, Mauro Riccò, Sarah Shulda, Vitalie Stavila, Theodore A Steriotis, Colin J Webb, Matthew Witman, Michael Hirscher

    Progress in Energy 2022年10月1日

    DOI: 10.1088/2516-1083/ac8d44  

  12. Hydrogen Isotope Separation Using a Metal–Organic Cage Built from Macrocycles 査読有り

    Donglin He, Linda Zhang, Tao Liu, Rob Clowes, Marc A. Little, Ming Liu, Michael Hirscher, Andrew I. Cooper

    Angewandte Chemie 2022年8月8日

    DOI: 10.1002/ange.202202450  

  13. Chemical Affinity of Ag-Exchanged Zeolites for Efficient Hydrogen Isotope Separation

    Linda Zhang, Toshiki Wulf, Florian Baum, Wolfgang Schmidt, Thomas Heine, Michael Hirscher

    Inorganic Chemistry 2022年6月27日

    出版者・発行元: American Chemical Society ({ACS})

    DOI: 10.1021/acs.inorgchem.2c00028  

  14. Isotope-selective pore opening in a flexible metal-organic framework

    Linda Bondorf, Jhonatan Luiz Fiorio, Volodymyr Bon, Linda Zhang, Mariia Maliuta, Sebastian Ehrling, Irena Senkovska, Jack D. Evans, Jan-Ole Joswig, Stefan Kaskel, Thomas Heine, Michael Hirscher

    Science Advances 8 (15) 2022年4月15日

    出版者・発行元: American Association for the Advancement of Science ({AAAS})

    DOI: 10.1126/sciadv.abn7035  

  15. Tailoring morphological and chemical properties of covalent triazine frameworks for dual CO2 and H2 adsorption

    Giulia Tuci, Andree Iemhoff, Andrea Rossin, Dmitry Yakhvarov, Marco Filippo Gatto, Rafael Balderas-Xicohténcatl, Linda Zhang, Michael Hirscher, Regina Palkovits, Cuong Pham-Huu, Giuliano Giambastiani

    International Journal of Hydrogen Energy 2022年2月

    DOI: 10.1016/j.ijhydene.2021.12.197  

    ISSN:0360-3199

  16. Hydrogen isotopes separation in Ag(I) exchanged ZSM-5 zeolite through strong chemical affinity quantum sieving

    Renjin Xiong, Jinfan Chen, Linda Zhang, Peilong Li, Xiayan Yan, Yaqi Song, Wenhua Luo, Tao Tang, Ge Sang, Michael Hirscher

    Microporous and Mesoporous Materials 313 110820-110820 2021年1月

    出版者・発行元: Elsevier {BV}

    DOI: 10.1016/j.micromeso.2020.110820  

    ISSN:1387-1811

  17. Highly effective hydrogen isotope separation through dihydrogen bond on Cu(I)-exchanged zeolites well above liquid nitrogen temperature

    Renjin Xiong, Linda Zhang, Peilong Li, Wenhua Luo, Tao Tang, Bingyun Ao, Ge Sang, Changan Chen, Xiayan Yan, Jinfan Chen, Michael Hirscher

    Chemical Engineering Journal 391 123485-123485 2020年7月

    出版者・発行元: Elsevier {BV}

    DOI: 10.1016/j.cej.2019.123485  

    ISSN:1385-8947

  18. How to functionalise metal–organic frameworks to enable guest nanocluster embedment

    James King, Linda Zhang, Szymon Doszczeczko, Olga Sambalova, Hui Luo, Fadli Rohman, Omotoyosi Phillips, Andreas Borgschulte, Michael Hirscher, Matthew Addicoat, Petra {\'{A } }gota Szil{\'{a } }gyi

    Journal of Materials Chemistry A 8 (9) 4889-4897 2020年

    出版者・発行元: Royal Society of Chemistry ({RSC})

    DOI: 10.1039/c9ta12837a  

    ISSN:2050-7488 2050-7496

    詳細を見る 詳細を閉じる

    <p>We report on the development and verification of an enhanced computational model capable of robust predictions and yielding a single descriptor to the successful embedding of nanoclusters into the pores of functionalised metal–organic frameworks.</p>

  19. Exploiting Dynamic Opening of Apertures in a Partially Fluorinated MOF for Enhancing H2 Desorption Temperature and Isotope Separation

    Linda Zhang, Seohyeon Jee, Jaewoo Park, Minji Jung, Dirk Wallacher, Alex, ra Franz, Wonjoo Lee, Minyoung Yoon, Kyungmin Choi, Michael Hirscher, Hyunchul Oh

    Journal of the American Chemical Society 141 (50) 19850-19858 2019年12月18日

    出版者・発行元: American Chemical Society ({ACS})

    DOI: 10.1021/jacs.9b10268  

    ISSN:0002-7863 1520-5126

  20. Barely porous organic cages for hydrogen isotope separation

    Ming Liu, Linda Zhang, Marc A. Little, Venkat Kapil, Michele Ceriotti, Siyuan Yang, Lifeng Ding, Daniel L. Holden, Rafael Balderas-Xicoht{\'{e } }ncatl, Donglin He, Rob Clowes, Samantha Y. Chong, Gisela Schütz, Linjiang Chen, Michael Hirscher, Andrew I. Cooper

    Science 366 (6465) 613-620 2019年11月1日

    出版者・発行元: American Association for the Advancement of Science ({AAAS})

    DOI: 10.1126/science.aax7427  

    ISSN:0036-8075 1095-9203

    詳細を見る 詳細を閉じる

    <jats:p>The separation of hydrogen isotopes for applications such as nuclear fusion is a major challenge. Current technologies are energy intensive and inefficient. Nanoporous materials have the potential to separate hydrogen isotopes by kinetic quantum sieving, but high separation selectivity tends to correlate with low adsorption capacity, which can prohibit process scale-up. In this study, we use organic synthesis to modify the internal cavities of cage molecules to produce hybrid materials that are excellent quantum sieves. By combining small-pore and large-pore cages together in a single solid, we produce a material with optimal separation performance that combines an excellent deuterium/hydrogen selectivity (8.0) with a high deuterium uptake (4.7 millimoles per gram).</jats:p>

  21. Thermodynamics, kinetics and selectivity of H 2 and D 2 on zeolite 5A below 77K

    Renjin Xiong, Rafael Balderas Xicoht{\'{e } }ncatl, Linda Zhang, Peilong Li, Yong Yao, Ge Sang, Changan Chen, Tao Tang, Deli Luo, Michael Hirscher

    Microporous and Mesoporous Materials 264 22-27 2018年7月

    出版者・発行元: Elsevier {BV}

    DOI: 10.1016/j.micromeso.2017.12.035  

    ISSN:1387-1811

  22. Selective Hydrogen Isotope Separation via Breathing Transition in MIL-53(Al)

    Jin Yeong Kim, Linda Zhang, Rafael Balderas-Xicoht{\'{e } }ncatl, Jaewoo Park, Michael Hirscher, Hoi Ri Moon, Hyunchul Oh

    Journal of the American Chemical Society 139 (49) 17743-17746 2017年12月13日

    出版者・発行元: American Chemical Society ({ACS})

    DOI: 10.1021/jacs.7b10323  

    ISSN:0002-7863 1520-5126

  23. Exploiting Diffusion Barrier and Chemical Affinity of Metal–Organic Frameworks for Efficient Hydrogen Isotope Separation

    Jin Yeong Kim, Rafael Balderas-Xicoht{\'{e } }ncatl, Linda Zhang, Sung Gu Kang, Michael Hirscher, Hyunchul Oh, Hoi Ri Moon

    Journal of the American Chemical Society 139 (42) 15135-15141 2017年10月25日

    出版者・発行元: American Chemical Society ({ACS})

    DOI: 10.1021/jacs.7b07925  

    ISSN:0002-7863 1520-5126

︎全件表示 ︎最初の5件までを表示

講演・口頭発表等 23

  1. The Progress of “Turing Plan” for AI-Driven Hydrogen Materials Design 国際会議 招待有り

    The 10th International Symposium on Surface Science (ISSS-10) 2024年10月23日

  2. Challenges and outlook: nanoporous materials for hydrogen storage 招待有り

    2024年8月15日

  3. Porous materials to separate hydrogen from… heavy hydrogen 国際会議 招待有り

    2024年6月27日

  4. Tailoring porous materials for hydrogen storage 国際会議 招待有り

    2024年6月24日

  5. Porous materials to separate hydrogen from… heavy hydrogen 国際会議 招待有り

    2024年6月20日

  6. Tailoring porous materials for hydrogen storage and separation 国際会議

    34th Chinese Chemical Society (CCS) Congress 2024年6月16日

  7. Advanced Deuterium Separation in Metal-Azolate Framework: A Comprehensive Mechanistic Study 国際会議

    18th International Symposium on Metal-Hydrogen Systems 2024年5月28日

  8. Interaction of hydrogen molecules with high-surface-area porous materials: Hydrogen storage and isotope separation

    FRIS 10th Anniversary Symposium, Tohoku University 2024年2月21日

  9. Engineering porous adsorbents for hydrogen storage 国際会議 招待有り

    2024年1月19日

  10. From Kinetic and Chemical Affinity Sieving and Beyond: Metal–Organic Frameworks for Hydrogen Isotope Separation 国際会議

    MRM 2023 2023年12月12日

  11. Hydrogen Storage in Porous Materials: Challenges and Outlook 国際会議

    IEA Hydrogen tpc task 40 expert meeting 2023年11月14日

  12. Porous materials to separate hydrogen from heavy hydrogen 招待有り

    Tohoku-Melbourne Joint Workshop 2023年11月1日

  13. Engineering porous adsorbents for hydrogen storage 国際会議 招待有り

    2023年9月19日

  14. Dynamic opening of apertures for hydrogen isotope separation in cage-like ZnII macrocyclic complexes 国際会議

    Hydrogen-Metal Systems Gordon Research Conference 2023年6月27日

  15. Hydrogen isotope separation in flexible metal-organic frameworks

    17th International Symposium on Metal-Hydrogen Systems 2022年10月30日

  16. Imine macrocycles based crystalline solids for hydrogen isotope separation 国際会議

    Max-Planck Institute for Mathematics in the Sciences 2022年8月24日

  17. Fine-tuning of pore aperture for hydrogen isotope separation in porous organic cage molecules 国際会議

    RSC Chemical Science Functional Organic Materials Symposium 2019年9月24日

  18. Hydrogen isotope separation in ultrafine pores 国際会議

    Gordon Research Conference (GRC) Hydrogen-Metal Systems 2019年6月29日

  19. Hydrogen isotopes separation in porous organic cage molecules 国際会議

    16th International Symposium on Metal-Hydrogen Systems 2018年10月28日

  20. Interaction of hydrogen molecules with high-surface-area porous materials: Hydrogen storage and isotope separation 国際会議

    Workshop for Modern Magnetic Research 2018年7月31日

  21. Hydrogen isotope separation in MOFs with active open metal sites 国際会議

    EuroMOF 2017 2017年10月29日

  22. Adsorption experiments on MOF-2 and MOF-3 国際会議

    Workshop for Hydrogen in MOFs 2016年7月31日

  23. Zeolites for Hydrogen Isotope Separation 国際会議

    Workshop for Experimental and Computational Hydrogen Adsorption and Separation 2016年7月31日

︎全件表示 ︎最初の5件までを表示

共同研究・競争的資金等の研究課題 6

  1. 革新水素貯蔵 -水素反応の精密解析とデジタル技術の援用-

    折茂 慎一

    2024年10月 ~ 2027年10月

    詳細を見る 詳細を閉じる

    重負荷移動体への搭載などを目指した水素貯蔵技術の開発のためのボトルネック課題は, 貯蔵水素の高密度化などを実現するための従来の延長線上にない開発指針の構築である. しかし, 現状, 多様な材料群を俯瞰する水素貯蔵メカニズムの理解が進んでおらず, また材料開発やその後のシステム化にも広く展開できる指針も限定的である. そこで, システム展開からのバックキャストも踏まえて, さらに関連する国内産業界や海外研究機関とも連携して, 以下の研究イノベーションを推進する: 1. 材料: 材料機能の多様性に基づく革新性の追求 2. 解析: 高圧反応と解析領域の拡張 3. DX : DX化とMI/PIおよび数理科学の導入 本研究により, 革新水素貯蔵技術に向けた開発指針を構築することで, 温室効果ガスの削減効果が大きい燃料電池化した大型トラックの長距離走行・利用台数増加などへの将来的貢献が期待できる. さらに, 国内外の関連分野の研究開発領域を中長期的に先導する優秀な若手研究者・技術者の育成も進める.

  2. Flexible metal-organic frameworks (MOFs) for hydrogen isotope separation: insights into smart recognition of gas molecules towards materials design

    ZHANG LINDA

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research

    研究種目:Grant-in-Aid for Early-Career Scientists

    研究機関:Tohoku University

    2024年4月1日 ~ 2026年3月31日

  3. Optimizing Helium Separation Efficiency: Integrating Machine Learning with Metal-Organic Framework Membranes for Systematic Improvement

    提供機関:FRIS Creative Interdisciplinary Collaboration Program, Tohoku University

    2024年6月 ~ 2026年3月

  4. Determination of selective hydrogen isotope adsorption mechanisms in confined pores over a platform of novel MOFs

    研究種目:Neutron Beam Award at Spallation Neutron Source (SNS)

    研究機関:Spallation Neutron Source, Oak Ridge National Laboratory, US)

    2024年7月 ~ 2024年12月

  5. High Affinity Helium Separation and Recovery: Creative Design of Bespoke Microporous Mixed Matrix Adsorption Membranes

    提供機関:FY2023 AIMR Fusion research, Tohoku University

    2024年1月 ~ 2024年5月

  6. Determination of selective hydrogen isotope adsorption mechanisms over a platform of novel metal-organic frameworks

    研究種目:Neutron Beam Award at Spallation Neutron Source (SNS)

    研究機関:Spallation Neutron Source, Oak Ridge National Laboratory, US)

    2023年1月 ~ 2023年6月

︎全件表示 ︎最初の5件までを表示

学術貢献活動 6

  1. Frontiers of Chemical Science and Engineering

  2. International Journal of Hydrogen Energy

  3. The Journal of Physical Chemistry Letters

  4. Applied Surface Science

  5. Coordination Chemistry Reviews

  6. Nature Communications

︎全件表示 ︎最初の5件までを表示