研究者詳細

顔写真

オカ コウキ
岡 弘樹
Kouki Oka
所属
多元物質科学研究所 附属マテリアル・計測ハイブリッド研究センター 有機・バイオナノ材料研究分野
職名
准教授
学位
  • 博士(工学)(早稲田大学)

e-Rad 研究者番号
50907376

経歴 16

  • 2025年4月 ~ 継続中
    東北大学 大学院工学研究科 准教授(兼任)

  • 2025年4月 ~ 継続中
    東北大学 大学院理学研究科 准教授(兼任)

  • 2025年4月 ~ 継続中
    東北大学 多元物質科学研究所 准教授

  • 2024年5月 ~ 継続中
    茨城大学カーボンリサイクルエネルギー研究センター 特命研究員(兼任)

  • 2024年4月 ~ 継続中
    京都大学 学際融合教育推進センター 重水素学研究拠点ユニット メンバー(兼任)

  • 2021年12月 ~ 継続中
    早稲田大学 早稲田高等学院 招聘講師(兼任)

  • 2024年4月 ~ 2025年3月
    山梨大学 大学院医工農学総合教育部・工学部 非常勤講師

  • 2024年4月 ~ 2025年3月
    東北大学 大学院理学研究科 化学専攻 講師(兼任)

  • 2024年4月 ~ 2025年3月
    東北大学 大学院工学研究科 講師(兼任)

  • 2023年12月 ~ 2025年3月
    東北大学 多元物質科学研究所 講師

  • 2021年12月 ~ 2023年11月
    大阪大学 大学院工学研究科 応用化学専攻 テニュアトラック助教

  • 2021年12月 ~ 2023年11月
    大阪大学 大学院工学研究科 附属フューチャーイノベーションセンター テニュアトラック助教

  • 2021年10月 ~ 2021年11月
    独立行政法人日本学術振興会 国際競争力強化研究員(CPD)

  • 2021年4月 ~ 2021年9月
    独立行政法人 日本学術振興会 特別研究員(PD)

  • 2019年4月 ~ 2021年3月
    独立行政法人日本学術振興会 特別研究員(DC1)

  • 2018年10月 ~ 2021年3月
    ウプサラ大学 訪問研究員

︎全件表示 ︎最初の5件までを表示

学歴 1

  • 早稲田大学 大学院先進理工学研究科 一貫制博士課程

    2017年4月 ~ 2021年3月

委員歴 7

  • ⼀般社団法⼈ 触媒学会 水素の製造と利用のための触媒技術研究会 世話人

    2025年4月 ~ 継続中

  • 公益財団法人 化学工学会 セッションオーガナイザー

    2024年9月 ~ 継続中

  • 一般社団法人 日本接着学会 若手交流シンポジウム 代表世話人

    2024年6月 ~ 継続中

  • 一般社団法人 日本接着学会 若手交流会 幹事

    2024年6月 ~ 継続中

  • 公益財団法人 高分子学会関西若手会 幹事

    2022年1月 ~ 継続中

  • 公益社団法人高分子学会 高分子未来塾 委員(レンジャー)

    2021年7月 ~ 継続中

  • 日本学術振興会 育志会(育志賞受賞者の会) 幹事

    2021年4月 ~ 継続中

︎全件表示 ︎最初の5件までを表示

所属学協会 7

  • 日本接着学会

    2024年4月 ~ 継続中

  • 日本MRS水素科学技術連携研究会

  • 触媒学会

  • 日本学術振興会 育志会

  • 日本学術振興会 スウェーデン日本人研究者の会

  • 高分子学会

  • 日本化学会

︎全件表示 ︎最初の5件までを表示

研究キーワード 4

  • 機能性有機材料

  • エネルギー変換

  • 高分子化学

  • 電気化学

研究分野 3

  • ナノテク・材料 / 有機機能材料 /

  • ナノテク・材料 / エネルギー化学 /

  • ナノテク・材料 / 高分子材料 /

受賞 42

  1. 日本接着学会 令和7年度(第47回)奨励賞

    2025年6月 一般社団法人 日本接着学会

  2. 第24回インテリジェント・コスモス奨励賞

    2025年5月 公益財団法人インテリジェント・コスモス学術振興財団

  3. 小澤・吉川記念賞

    2025年3月 小澤・吉川記念エレクトロニクス研究助成基金

  4. 第30回青葉工学研究奨励賞

    2024年11月 一般社団法人 青葉工学振興会

  5. 第12回 研究部共同利用・共同研究 若手萌芽研究最優秀賞

    2024年5月 東北大学金属材料研究所

  6. 第12回新化学技術研究奨励賞

    2023年5月 公益社団法人新化学技術推進協会

  7. 船井研究奨励賞

    2023年3月 公益財団法人 船井情報科学振興財団

  8. 井上研究奨励賞

    2022年12月 公益財団法人井上科学振興財団

  9. 研究奨励賞

    2022年12月 公益財団法人 高柳健次郎財団

  10. 第16回わかしゃち奨励賞 優秀賞

    2021年12月 愛知県

  11. 小野梓記念学術賞

    2021年3月 早稲田大学

  12. 第11回(令和2(2020)年度)日本学術振興会 育志賞

    2021年1月

  13. 最優秀発表賞

    2020年4月 超異分野学会 本大会

  14. ナノアカデミア賞

    2020年1月 nano tech 2020

  15. ハイドロジェノミクス奨励賞

    2019年11月 新学術領域研究 ハイドロジェノミクス

  16. 感謝状

    2024年11月 早稲田大学高等学院

  17. 太陽誘電賞

    2024年11月 東北テックプラングランプリ2024

  18. Best Researcher Award

    2024年6月 International Research Awards on Leadership and Management

  19. ONSA賞

    2024年5月 (一社)大阪ニュークリアサイエンス協会

  20. 感謝状

    2023年11月 早稲田大学高等学院

  21. 大阪大学賞

    2023年10月 国立大学法人 大阪大学

  22. Journal of Materials Chemistry A, HOT Papers 選出

    2023年4月 The Royal Society of Chemistry

  23. 感謝状

    2023年3月 早稲田大学高等学院

  24. 1st in Academic Researcher (Finalist),

    2022年10月 Genius Challenge (Iodine Innovation) by SQM

  25. 第54回リバネス研究費 日本ハム賞

    2022年3月

  26. 感謝状

    2021年12月 公益社団法人 高分子学会 高分子未来塾 委員会

  27. 大倉工業賞

    2021年12月 超異分野学会 香川フォーラム

  28. 感謝状

    2021年10月 株式会社 リバネス

  29. Polymer Journal 7月号 ハイライト記事に選出

    2021年7月 公益財団法人 高分子学会

  30. 感謝状

    2021年7月 公益財団法人 高分子学会

  31. スウェーデン・ウプサラ大学 博士課程ジョイントスーパービジョンプログラム 修了

    2021年3月

  32. 土田英俊先生記念奨学金

    2021年3月 早稲田大学 高研会

  33. 水野賞

    2021年3月 早稲田大学

  34. 第49回リバネス研究費 ダスキン開発研究所賞

    2021年2月

  35. 第1回エコテックグランプリ_ファイナリスト選出

    2020年10月

  36. 第46回 リバネス研究費 エネルギー・エコシステム賞

    2020年1月

  37. Best Poster Award

    2020年1月 14th INTERNATIONAL SYMPOSIUM HYDROGEN & ENERGY

  38. 最優秀ポスター賞

    2019年12月 未来・水素エネルギーフォーラム

  39. Gold Award

    2019年10月 6th Federation of Asian Polymer Societies International Polymer Congress

  40. S評価 (最高評価)

    2019年3月 早稲田大学 アドバイザリーボード(企業執行役員からの研究評価)

  41. 優秀ポスター賞

    2017年9月 第66回高分子討論会

  42. Poster Presentation Award

    2017年8月 17th IUPAC International Symposium on MacroMolecular Complexes

︎全件表示 ︎最初の5件までを表示

論文 97

  1. Micropore-Confined Organic Solid for a High-Rate and Durable Electrode 査読有り

    Kaiya Nakasone, Showa Kitajima, Hitoshi Kasai, Kouki Oka, Daisuke Takimoto

    ACS Applied Materials & Interfaces 2025年7月27日

    出版者・発行元: American Chemical Society (ACS)

    DOI: 10.1021/acsami.5c11604  

    ISSN:1944-8244

    eISSN:1944-8252

  2. Iodine-Based Chemical Polymerization Enables the Development of Neat Amorphous Porous Organic Polymers 査読有り

    Kohei Okubo, Haruka Yoshino, Hitoshi Miyasaka, Hitoshi Kasai, Kouki Oka

    ACS Applied Materials & Interfaces 2025年2月21日

    出版者・発行元: American Chemical Society (ACS)

    DOI: 10.1021/acsami.4c22197  

    ISSN:1944-8244

    eISSN:1944-8252

  3. Triphenylamine‐Based Porous Organic Polymers with High Porosity: their High Carbon‐Dioxide Adsorption and Proton‐Conductivity Emergence 査読有り

    Kohei Okubo, Showa Kitajima, Hitoshi Kasai, Kouki Oka

    Small 2025年2月17日

    出版者・発行元: Wiley

    DOI: 10.1002/smll.202410794  

    ISSN:1613-6810

    eISSN:1613-6829

    詳細を見る 詳細を閉じる

    Abstract Amorphous porous organic polymers (POPs) feature high specific surface area and chemical and thermal stability; therefore, they are applied in various fields. It is previously reported that chemical polymerization using iodine as an oxidant enables the synthesis of amorphous POPs without impurities. In this study, an iodine‐based chemical polymerization method is employed to maximize the specific surface area of polytriphenylamine, a typical amorphous POP. Furthermore, 1,3,5‐tris[4‐(diphenylamino)phenyl]benzene, a monomer with three triphenylamine moieties connected by a benzene core, is used to increase the number of reaction points and construct a rigid structure. The resulting poly[1,3,5‐tris[4‐(diphenylamino)phenyl]benzene] (pTTPA) exhibited a high specific surface area. Using 200 equivalents of iodine resulted in a pTTPA with the largest Brunauer–Emmett–Teller (BET) specific surface area (2134.6 m2 g−1) among previously reported triphenylamine‐based amorphous POPs, and demonstrated a high CO2 adsorption capacity (3.31 mmol g−1 at 25 °C). Furthermore, pTTPA exhibited significant water–vapor adsorption when the BET specific surface area reached 1500 m2 g−1, leading to the emergence of proton conductivity (e.g., 4.33 × 10−6 S cm−1 at 95% RH and 90 °C). The findings demonstrate that iodine‐based chemical polymerization enables the maximization of the porosity of amorphous POPs and the development of proton conductivity within them.

  4. Sustainable hydrogen production & storage cycle with dihydrolevoglucosenone (Cyrene™): Hydrogen fixing and release based on alcoholic fermentation with Baker's yeast and dehydrogenation 査読有り

    Takumi Ichimura, Hiroki Maeda, Takuya Shimbayashi, Kohei Okubo, Masayuki Fukushima, Norimitsu Tohnai, Ken-ichi Fujita, Kouki Oka

    International Journal of Hydrogen Energy 72 815-819 2024年6月28日

    出版者・発行元: Elsevier BV

    DOI: 10.1016/j.ijhydene.2024.05.403  

    ISSN:0360-3199

  5. Highly Fluorinated Nanospace in Porous Organic Salts with High Water Stability/Capability and Proton Conductivity 査読有り

    Takahiro Ami, Showa Kitajima, Kouki Oka, Norimitsu Tohnai

    Angewandte Chemie International Edition 2024年6月20日

    出版者・発行元: Wiley

    DOI: 10.1002/anie.202407484  

    ISSN:1433-7851

    eISSN:1521-3773

    詳細を見る 詳細を閉じる

    Water in hydrophobic nanospaces shows specific dynamic properties different from bulk water. The investigation of these properties is important in various research fields, including materials science, chemistry, and biology. The elucidation of the correlation between properties of water and hydrophobic nanospaces requires nanospaces covered only with simple hydrophobic group (e.g., fluorine) without impurities such as metals. This work successfully fabricated all‐organic diamondoid porous organic salts (d‐POSs) with highly fluorinated nanospaces, wherein hydrophobic fluorine atoms are densely exposed on the void surfaces, by combining fluorine substituted triphenylmethylamine (TPMA) derivatives with tetrahedral tetrasulfonic acid. This d‐POSs with a highly fluorinated nanospace significantly improved their water stability, retaining their crystal structure even when immersed in water over one week. Moreover, this highly hydrophobic and fluorinated nanospace adsorbs 160 mL(STP)/g of water vapor at Pe/P0 = 0.90; this is the first hydrophobic nanospace, which water molecules can enter, in an all‐organic porous material. Furthermore, this highly fluorinated nanospace exhibits very high proton conductivity (1.34 × 10−2 S/cm) at 90°C and 95%RH. POSs with tailorable nanospaces may significantly advance the elucidation of the properties of specific “water” in pure hydrophobic environments.

  6. Spirobifluorene‐Based Porous Organic Salts: Their Porous Network Diversification and Construction of Chiral Helical Luminescent Structures 査読有り

    Kohei Okubo, Kouki Oka, Keiho Tsuchiya, Atsunori Tomimoto, Norimitsu Tohnai

    Angewandte Chemie International Edition 2024年1月27日

    出版者・発行元: Wiley

    DOI: 10.1002/anie.202400475  

    ISSN:1433-7851

    eISSN:1521-3773

    詳細を見る 詳細を閉じる

    Porous organic salts (POSs) are organic porous materials assembled via charge‐assisted hydrogen bonds between strong acids and bases such as sulfonic acids and amines. To diversify the network topology of POSs and extend its functions, this study focused on using 4,4',4'',4'''‐(9,9'‐spirobi[fluorene]‐2,2',7,7'‐tetrayl)tetrabenzenesulfonic acid (spiroBPS), which is a tetrasulfonic acid comprising a square planar skeleton. The POS consisting of spiroBPS and triphenylmethylamine (TPMA) (spiroBPS/TPMA) was constructed from the two‐fold interpenetration of an orthogonal network with pts topology, which has not been reported in conventional POSs, owing to the shape of the spirobifluorene backbone. Furthermore, combining tris(4‐chlorophenyl)methylamine (TPMA‐Cl) and tris(4‐bromophenyl)methylamine (TPMA‐Br), which are bulkier than TPMA owing to the introduction of halogens at the p‐position of the phenyl groups with spiroBPS allows us to construct novel POSs (spiroBPS/TPMA‐Cl and spiroBPS/TPMA‐Br). These POSs were constructed from a chiral helical network with pth topology, which was induced by the steric hindrance between the halogens and the curved fluorene skeleton. Moreover, spiroBPS/TPMA‐Cl with pth topology exhibited circularly polarized luminescence (CPL) in the solid state, which has not been reported in hydrogen‐bonded organic frameworks (HOFs).

  7. Porous Organic Salts: Diversifying Void Structures and Environments 査読有り

    Takahiro Ami, Kouki Oka, Keiho Tsuchiya, Norimitsu Tohnai

    Angewandte Chemie International Edition 61 (31) 2022年5月19日

    出版者・発行元: Wiley

    DOI: 10.1002/anie.202202597  

    ISSN:1433-7851

    eISSN:1521-3773

  8. Organic π‐Conjugated Polymers as Photocathode Materials for Visible‐Light‐Enhanced Hydrogen and Hydrogen Peroxide Production from Water 査読有り

    Kouki Oka, Bjorn Winther‐Jensen, Hiroyuki Nishide

    Advanced Energy Materials 11 (43) 2003724-2003724 2021年11月

    出版者・発行元: Wiley

    DOI: 10.1002/aenm.202003724  

    ISSN:1614-6832

    eISSN:1614-6840

  9. Poly(1,4‐di(2‐thienyl))benzene Facilitating Complete Light‐Driven Water Splitting under Visible Light at High pH 査読有り

    Kouki Oka, Kanako Noguchi, Takeo Suga, Hiroyuki Nishide, Bjorn Winther‐Jensen

    Advanced Energy Materials 9 (6) 1803286-1803286 2019年2月

    出版者・発行元: Wiley

    DOI: 10.1002/aenm.201803286  

    ISSN:1614-6832

    eISSN:1614-6840

  10. Poly(vinyldibenzothiophenesulfone): Its Redox Capability at Very Negative Potential Toward an All‐Organic Rechargeable Device with High‐Energy Density 査読有り

    Kouki Oka, Ryo Kato, Kenichi Oyaizu, Hiroyuki Nishide

    Advanced Functional Materials 28 (50) 1805858-1805858 2018年12月

    出版者・発行元: Wiley

    DOI: 10.1002/adfm.201805858  

    ISSN:1616-301X

    eISSN:1616-3028

  11. Light-assisted electrochemical water-splitting at very low bias voltage using metal-free polythiophene as photocathode at high pH in a full-cell setup 査読有り

    Kouki Oka, Orie Tsujimura, Takeo Suga, Hiroyuki Nishide, Bjorn Winther-Jensen

    Energy and Environmental Science 11 (5) 1335-1342 2018年5月

    DOI: 10.1039/c7ee03669h  

    ISSN:1754-5692

    eISSN:1754-5706

  12. Hydroquinone-substituted polyallylamine: redox capability for aqueous polymer–air secondary batteries and recyclability 招待有り 査読有り

    Kouki Oka, Showa Kitajima, Kohei Okubo, Kiyotaka Maruoka, Yuta Takahashi, Yoko Teruchi, Minoru Takeuchi, Kazuhiko Igarashi, Hitoshi Kasai

    Polymer Journal 2025年8月26日

    出版者・発行元: Springer Science and Business Media LLC

    DOI: 10.1038/s41428-025-01085-x  

    ISSN:0032-3896

    eISSN:1349-0540

    詳細を見る 詳細を閉じる

    Abstract Organic redox polymers, composed of earth-abundant elements, offer rapid charge storage and are promising electrode-active materials for aqueous batteries, potentially replacing metals and overcoming their resource and performance limitations. However, the hydrophobicity of many organic redox molecules hinders their application using aqueous electrolytes. This necessitates molecular designs that impart hydrophilicity while immobilizing redox-active moieties onto electrodes. Polyallylamine, with its high density of hydrophilic amino groups, serves as an effective backbone. In this work, functionalizing it with hydroquinone enabled the use of the polymer in aqueous batteries. While hydroquinone provides high theoretical capacity, irreversible quinhydrone formation limits its reversible and thorough charge storage. We addressed this by covalently attaching hydroquinone to polyallylamine via condensation. The resulting polymer exhibited reversible and thorough charge storage, which was attributed to electrostatic repulsion between amino groups that suppressed quinhydrone formation. A polymer–air secondary battery was fabricated with the polymer, Pt/C, and a 0.5 M H2SO4 aqueous solution as the anode, cathode, and electrolyte, respectively, without any separator. This polymer–air secondary battery displayed a constant discharge voltage with high cyclability (>99% capacity retention after 100 cycles) and high-rate capability. Moreover, the polymer demonstrated recyclability, as raw materials were generated simply by acid treatment. This work demonstrates a polymer design strategy for integrating typically hydrophobic organic redox molecules into recyclable aqueous batteries.

  13. Highly Porous, Electrically Conductive Two-Dimensional Nickel–Hexaaminodehydrobenzoannulene Frameworks 査読有り

    Enzo Ohkubo, Mitsuharu Suzuki, Naoya Aizawa, Osamu Ikeda, Showa Kitajima, Tomoyuki Koganezawa, Kaoru Ohta, Kouki Oka, Norimitsu Tohnai, Keisuke Tominaga, Ken-ichi Nakayama

    Journal of the American Chemical Society 2025年8月19日

    出版者・発行元: American Chemical Society (ACS)

    DOI: 10.1021/jacs.5c09695  

    ISSN:0002-7863

    eISSN:1520-5126

  14. Silk protein-based injectable hydrogel to deliver nano-prodrugs toward localized cancer treatment 査読有り

    Mengheng Yang, Anh T. N. Dao, Hisayuki Nakatani, Yuki Eguchi, Ryuju Suzuki, Yoshitaka Koseki, Kouki Oka, Hitoshi Kasai

    MRS Communications 2025年6月9日

    出版者・発行元: Springer Science and Business Media LLC

    DOI: 10.1557/s43579-025-00750-9  

    eISSN:2159-6867

  15. Cytotoxicity Study of π‐Conjugated Arsenic Compounds 査読有り

    Tomoki Yasui, Aki Shibata, Tomoka Ishikawa, Yukako Fujita, Chihiro Okochi, Yoshitaka Koseki, Hitoshi Kasai, Kouki Oka, Kensuke Naka, Hiroaki Imoto

    ChemistrySelect 10 (21) 2025年6月3日

    出版者・発行元: Wiley

    DOI: 10.1002/slct.202502502  

    ISSN:2365-6549

    eISSN:2365-6549

    詳細を見る 詳細を閉じる

    Abstract Organoarsenic chemistry is an emerging field focused on the development of heteroatom‐containing functional organic materials. However, concerns regarding the potential toxicity of arsenic remain to be addressed. In this study, we evaluated the cytotoxicity of π‐conjugated organoarsenic compounds against HCT‐116 human colon cancer cells using a nanoparticle fabrication method. Various functional organoarsenic compounds exhibited low‐to‐negligible cytotoxicity (IC50 > 10 µM), in contrast to phenylarsine oxide (IC50 = 2.8 µM), a compound well‐known for its high toxicity. Notably, phenylarsonic acid, a key synthetic precursor of these compounds, also demonstrated very low cytotoxicity.

  16. Front Cover: Recyclable Organic Redox Molecules for Sustainable Batteries (ChemSusChem 11/2025)

    Kouki Oka, Hitoshi Kasai

    ChemSusChem 18 (11) 2025年6月2日

    出版者・発行元: Wiley

    DOI: 10.1002/cssc.202581101  

    ISSN:1864-5631

    eISSN:1864-564X

  17. Rechargeable organic molecule-air battery 査読有り

    Showa Kitajima, Ryota Tanaka, Takumi Ichimura, Hitoshi Kasai, Kensuke Naka, Norimitsu Tohnai, Hiroaki Imoto, Kouki Oka

    Cell Reports Physical Science 102620-102620 2025年6月

    出版者・発行元: Elsevier BV

    DOI: 10.1016/j.xcrp.2025.102620  

    ISSN:2666-3864

  18. Hydrogen gas production & storage cycle with organic hydrides based on hydrogen fixing and release 招待有り 査読有り

    Takumi Ichimura, Hitoshi Kasai, Kouki Oka

    Energy 360 3 100028-100028 2025年6月

    出版者・発行元: Elsevier BV

    DOI: 10.1016/j.energ.2025.100028  

    ISSN:2950-4872

  19. Hydrophilization of Guaiazulene-based Blue Pigment: Improving its Stability in Acidic Condition by Substitution with Polyallylamine 査読有り

    Yo Kinoshita, Kiyotaka Maruoka, Yuta Takahashi, Yoko Teruchi, Minoru Takeuchi, Kazuhiko Igarashi, Hitoshi Kasai, Kouki Oka

    New Journal of Chemistry 2025年5月

    出版者・発行元: Royal Society of Chemistry (RSC)

    DOI: 10.1039/d5nj01214g  

    ISSN:1144-0546

    eISSN:1369-9261

    詳細を見る 詳細を閉じる

    Guaiazulene, an azulene compound with a blue color more saturated than that of naturally derived blue pigments, shows potential as a food coloring agent. However, poor water solubility and loss...

  20. Recyclable Organic Redox Molecules for Sustainable Batteries 査読有り

    Kouki Oka, Hitoshi Kasai

    ChemSusChem 2025年3月18日

    出版者・発行元: Wiley

    DOI: 10.1002/cssc.202402707  

    ISSN:1864-5631

    eISSN:1864-564X

    詳細を見る 詳細を閉じる

    Sustainable and environment‐friendly rechargeable devices are required to meet increasing electrical energy demands. Organic batteries are fabricated using organic redox materials which are potentially synthesised from earth‐abundant components. However, to avoid plastic pollution, these organic materials must display sufficient functions and ensure safe management post‐utilisation. This study demonstrated a sustainable and environment‐friendly recycling method for functional organic materials developed using organic redox molecules. These molecules could be prepared from earth‐abundant and sustainable raw chemicals via environment‐friendly preparation routes. The eco‐friendly battery, which uses organic redox molecules as anode‐ and cathode‐active materials and neutral aqueous solution as an electrolyte, exhibited high cyclability (>95% capacity after 100 cycles) and high‐rate capability (15 C). After use, the electrode‐active material was separated and/or decomposed to the original raw chemicals, demonstrating a green and sustainable option to use conventional organic redox materials.

  21. Dihydrolevoglucosenone (CyreneTM) as a Bio‐derived Liquid Organic Hydrogen Carrier 招待有り 査読有り

    Takumi Ichimura, Hitoshi Kasai, Kouki Oka

    ChemPlusChem 2025年1月3日

    出版者・発行元: Wiley

    DOI: 10.1002/cplu.202400639  

    ISSN:2192-6506

    eISSN:2192-6506

    詳細を見る 詳細を閉じる

    Organic hydrides can store hydrogen via chemical bonding under ambient conditions, enabling the safe storage and transportation of hydrogen gas using the same infrastructure for gasoline. However, in previous research, most organic hydrides have been produced from petroleum, and therefore replacing them with earth‐abundant or renewable compounds is essential to ensure sustainability. This study demonstrates dihydrolevoglucosenone (CyreneTM), which is a biodegradable liquid ketone that is produced directly from biomass without pretreatments on an industrial scale, as a new renewable organic hydride. CyreneTM (hydrogen acceptor) is hydrogenated under ambient hydrogen pressure with a highly durable metal complex catalyst to produce 1,6‐anhydro‐3,4‐dideoxy‐β‐D‐threo‐hexopyranose (Cyrene‐OH, hydrogen adduct). Cyrene‐OH stores hydrogen via chemical bonding under ambient conditions, and is dehydrogenated by heating in the presence of the same catalyst to release hydrogen gas and reproduce CyreneTM. This study reports the first attempt to apply compounds, which can be produced directly from biomass on an industrial scale, to organic hydrides, and promotes the development of earth‐abundant biomass for sustainable hydrogen storage.

  22. Zeolitic imidazolate framework-22: high hydrophilicity, water resistance, and proton conduction 査読有り

    Hiroi Sei, Hitoshi Kasai, Kouki Oka

    Nanoscale Advances 2025年

    出版者・発行元: Royal Society of Chemistry (RSC)

    DOI: 10.1039/d5na00686d  

    eISSN:2516-0230

    詳細を見る 詳細を閉じる

    Due to presence of an appropriate number (one) of uncoordinated N-heteroatoms in the organic linker, zeolitic imidazolate framework-22 (ZIF-22) exhibited the highest hydrophilicity among ZIFs, high water resistance, and high proton conduction.

  23. Fluorinated Metal–Organic Frameworks: Hydrophobic Nanospaces with High Fluorine Density and Proton Conductivity 査読有り

    Ryota Akai, Hitoshi Kasai, Kouki Oka

    Nanoscale 2025年

    出版者・発行元: Royal Society of Chemistry (RSC)

    DOI: 10.1039/d5nr00342c  

    ISSN:2040-3364

    eISSN:2040-3372

    詳細を見る 詳細を閉じる

    The current work revealed the relationship between the fluorine density of organic-based porous materials and water dynamics (proton conduction) in the hydrophobic nanospace. In detail, focusing on UiO-66 with structural...

  24. Front cover

    Kouki Oka

    Chemical Communications 61 (8) 1473-1473 2025年1月

    出版者・発行元: Royal Society of Chemistry (RSC)

    DOI: 10.1039/d5cc90031j  

    ISSN:1359-7345

    eISSN:1364-548X

  25. Developing porous electrocatalysts to minimize overpotential for oxygen evolution reaction 招待有り 査読有り

    Takahiro Ami, Kouki Oka, Hitoshi Kasai, Tatsuo Kimura

    Chemical Communications 61 (8) 1533-1558 2025年1月

    出版者・発行元:

    DOI: 10.1039/d4cc05348f  

    ISSN:1359-7345

    eISSN:1364-548X

  26. Hydrophilization of hydrophobic azulene derivative by substitution with polyallylamine without drastically changing its optical properties 査読有り

    Yo Kinoshita, Kiyotaka Maruoka, Yuta Takahashi, Yoko Teruuchi, Minoru Takeuchi, Kazuhiko Igarashi, Hitoshi Kasai, Kouki Oka

    MRS Communications 2024年11月25日

    出版者・発行元: Springer Science and Business Media LLC

    DOI: 10.1557/s43579-024-00680-y  

    eISSN:2159-6867

  27. An SEI-Forming Fluorophosphate Solvent for High-Temperature Lithium-Ion Batteries 査読有り

    Kazuki Takeuchi, Yasuyuki Kondo, Yu Katayama, Kouki Oka, Yuki Yamada

    ECS Meeting Abstracts MA2024-02 (67) 4533-4533 2024年11月22日

    出版者・発行元: The Electrochemical Society

    DOI: 10.1149/ma2024-02674533mtgabs  

    eISSN:2151-2043

    詳細を見る 詳細を閉じる

    Introduction Recently, there has been an increasing demand for high-energy-density lithium-ion batteries (LIBs) that operate under broad temperature conditions (–40 to 70°C). As an electrolyte solvent, ethylene carbonate (EC) has been essential to form a solid electrolyte interphase (SEI), which effectively suppresses side reactions such as graphite exfoliation and continuous electrolyte decomposition on negative electrodes(1). However, EC is not only flammable but also susceptible to severe oxidative and reductive decomposition at high temperatures, thereby limiting the operational temperature of LIBs to around 55°C(2). There has been no alternative solvent that has (i) SEI-forming ability, (ii) nonflammability, and (iii) high-temperature stability. Hence, it has been challenging to realize the high-temperature and safe operation of LIBs. In this study, we designed and synthesized a novel phosphate solvent, FDPO, which is nonflammable and can form stable SEI on graphite. FDPO has a structural feature similar to LiPO2F2, which can improve SEI properties and high-temperature performance of batteries(3-4). We investigated the charge-discharge performances of negative and positive electrodes for LIBs with FDPO-based electrolytes at high temperature. Experimental methods Electrolytes were prepared by mixing LiPF6, FDPO, and methyl 2,2,2-trifluoroethyl carbonate (FEMC), which is known as a low viscous and flame-retardant solvent. Charge-discharge tests were conducted using coin cells with the natural graphite|Li cell configuration. The current density of 186 mA g-1 (2C) was applied from the 4th cycle after pre-conditioning three cycles at a current density of 37.2 mA g-1 (10C). The cut-off voltage range was set to 2.5 V – 0.01 V. Results and discussion Figure 1 shows the charge-discharge performances of natural graphite|Li coin cells at 70°C. The cell with the commercial electrolyte exhibited severe capacity decay to ca. 142 mAh g-1 after 50th cycles. On the other hand, the cell with FDPO-based electrolyte retained a high reversible capacity of ca. 343 mAh g-1. In addition, the charge-discharge efficiency was over 99.6% in the FDPO-based electrolyte, indicating suppressed electrolyte decomposition even at 70°C. Based on these results, the FDPO itself is thermally stable and also forms a thermally stable SEI on graphite, thereby suppressing capacity degradation under high-temperature conditions. In the presentation, the results of X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry analyses for the SEI derived from FDPO-based electrolytes, along with the charge-discharge performances of positive electrodes, will be discussed. References (1) Wang, A. et al., npj Computational Materials, 2018, 4, 15. (2) Lu, L. et al., J. Power Sources, 2013, 226, 272. (3) Yang, G. et al., RSC Adv, 2017, 7, 26052. (4) Kuang, S. et al., ACS Appl. Mater. Interfaces, 2022, 14, 19056-19066. Acknowledgment A part of this work was supported by JST GteX (JPMJGX23S3). Figure 1 <p></p>

  28. Organic π-Conjugated Polymers as a Photoelectrocatalyst for Water-Splitting 査読有り

    Kouki Oka

    ECS Meeting Abstracts MA2024-02 (59) 3951-3951 2024年11月22日

    出版者・発行元: The Electrochemical Society

    DOI: 10.1149/ma2024-02593951mtgabs  

    eISSN:2151-2043

    詳細を見る 詳細を閉じる

    Introduction Hydrogen gas (H2 ) is an important chemical feedstock; it is used as a reductant in petroleum refining, ammonia synthesis, the manufacture of stainless steel, and the production of core chemicals (e.g., methanol) and food (e.g., margarine). H2 is also regarded to be a critical and indispensable clean fuel for sustainable energy systems because of its extremely high energy density of 142 kJ g−1 (vs. 44 kJ g−1 for gasoline) and low pollution emissions.1) However, H2 is presently produced by conversion of hydrocarbons or fossil fuels and is accompanied by enormous energy consumption and greenhouse gas emissions. To realize carbon neutral and sustainable circulation technology, carbon-free and green H2 production methods, such as water-splitting, are required. 2) Results and discussion This presentation describes organic π-conjugated polymers as a novel photoelectrocatalyst towards water-splitting.2-4) π-Conjugated polymers synthesized without residual metals were developed to function in "water", which defied common sense, leading to this novel catalytic ability. In detail, (1) we succeeded in synthesizing polythiophene, which is a type of π-conjugated polymer, in a film form without residual metal by our unique iodine-vapor-phase polymerization method (2) We found that this polythiophene film worked as a novel photoelectrocatalyst that absorbs visible-light and highly efficiently reduces water to generate H2 . (3) In addition, based on a rigid π-conjugated polymer structure, this polythiophene film catalyzed water-splitting/ H2 production with surprisingly high durability (more than 1 month without no degradation). The development of environmentally-friendly organic catalysts that do not use precious metals will lead to the production of truly green H2 . We will also describe developments to other catalytic functions (O2 reduction/ H2O2 production etc.) of organic π-conjugated polymers. References 1) Schlapbach, L. et al., Nature, 2001, 414, 353-358. 2) Oka, K. et al., Adv. Energy Mater., 2021, 11, 2003724. 3) Oka, K. et al., Energy Environ. Sci., 2018, 11, 1335-1342. 4) Oka, K. et al., Adv. Energy Mater. 2019, 9, 1803286. Acknowledgment This work was partially supported by Grants-in-Aids for Scientific Research (No. JP23K17945, JP23H03827, JP24K01552) from MEXT, Japan. K. Oka. also acknowledges the support from Shorai Foundation for Science and Technology, TEPCO Memorial Foundation, Amano Industry Technology Laboratory, Sugiyama Houkoukai, The Yamada Science Foundation, Kenjiro Takayanagi Foundation, Kansai Research Foundation for Technology Promotion, and JACI Prize for Encouraging Young Researcher.

  29. Rechargeable Organic Molecule-Air Battery 査読有り

    Showa Kitajima, Hitoshi Kasai, Kouki Oka

    ECS Meeting Abstracts MA2024-02 (67) 4464-4464 2024年11月22日

    出版者・発行元: The Electrochemical Society

    DOI: 10.1149/ma2024-02674464mtgabs  

    eISSN:2151-2043

    詳細を見る 詳細を閉じる

    [Introduction] The development of environmentally friendly batteries, such as rechargeable aqueous metal-air batteries, has been required for sustainable energy supply. Aqueous zinc-air batteries, composed of zinc as the anode, O2 in the air as the cathode, and a very base aqueous solution (e.g., 6 M KOH aqueous solution) as the electrolyte, are one of the representative environmentally friendly batteries, because of their high energy density (1353 W h kg−1 excluding oxygen) compared to conventional lithium-ion batteries (limited to be &lt;350 W h kg−1 based on the intercalation chemistry).[1] However, these batteries usually have extremely low cyclability because of dendrite formation on the anode and carbonate salt clogging (i.e., the reaction between CO2 in the air and the base) in the electrolyte during charging and discharging. To improve their cyclability, we previously reported a rechargeable organic polymer-air battery using a redox polymer with an anthraquinone derivative (which has a one-step two-electron redox capability in an acidic aqueous solution).[2] This rechargeable organic polymer-air battery exhibits a very high Coulombic efficiency of 99% because of the distorted structure of the anthraquinone derivative. However, organic redox polymers with linear polymer structures are not sufficiently robust for long-term use as an anode-active material in aqueous air batteries. On the other hand, Prof. Yu et al. have recently fabricated a rechargeable organic polymer-air battery using a networked polymer based on anthraquinone as an anode-active material and demonstrated very high cyclability of presumably 99% capacity retention even after 60,000 cycles.[3] This is presumably because the networked polymer forms a robust three-dimensional network that prevents it from decomposing or dissociating from the electrode. However, the Coulombic efficiency was lower than that of organic polymer-air batteries with organic linear polymers, and was only 95%. To achieve both the sufficiently high cyclability and high Coulombic efficiency as an aqueous air battery, the anode-active material must possess high hydrophilicity, exhibit high diffusivity of compensating ions in the material, and have a robust structure that is not decomposed or dissociated from the electrode during charging and discharging. In this work, as the anode-active material, we focused on the anthraquinone molecule itself, which has a reversible redox capacity at the very negative potential close to the potential window in aqueous electrolytes and whose redox properties can be modulated by facile organic synthesis. To improve anthraquinone’s hydrophilicity and inhibit its aggregation, we synthesized 2-propoxyethyl anthraquinone-2-carboxylate. 2-propoxyethyl anthraquinone-2-carboxylate had a reversible redox potential in an acidic aqueous solution, and we established a novel rechargeable organic molecule-air battery using2-propoxyethyl anthraquinone-2-carboxylate as the anode-active material and an acidic aqueous solution as the electrolyte. [Results &amp; Discussions] The battery was chargeable and dischargeable, with the very high Coulombic efficiency of &gt;99% at 15 C. The discharge capacity was almost full capacity, indicating that almost all the molecules contributed to charging and discharging. The discharge capacity remained &gt;99% even after 100 cycles, indicating that the battery had a very high cyclability. Even at 60 C, the discharge capacity of the battery was almost the same as that at 15 C, indicating a high-rate capability. Moreover, the results confirm that this novel rechargeable organic molecule-air battery exhibits the highest cyclability and Coulombic efficiency in rechargeable organic-based aqueous air batteries. Using 2-propoxyethyl anthraquinone-2-carboxylate as an anode-active material in aqueous air batteries will potentially achieve almost the same energy density and increase power density by several times or more, compared to the polymer-air batteries demonstrated. Therefore, the energy density of the aqueous air battery using 2-propoxyethyl anthraquinone-2-carboxylatewill be almost the same as that of metal-air batteries (e.g., zinc-air batteries), and its power density is expected to be higher than that of lithium-ion batteries. We want to discuss this in more detail at the poster session. [Reference] [1] J. Zhang et al., Chem. Sci. 2019, 10, 8924-8929. [2] K. Oka et al., Macromolecules 2021, 54, 4854-4859. [3] L. Zhong et al., Angew. Chem. Int. Ed. 2021, 60, 10164-10171. Figure 1 <p></p>

  30. Weakly Coordinating Solvents with FSI-Inspired Structures for Highly Efficient Lithium Metal Batteries 査読有り

    Shoma Nishimura, Yasuyuki Kondo, Kazuki Takeuchi, Yu Katayama, Kouki Oka, Yuki Yamada

    ECS Meeting Abstracts MA2024-02 (7) 997-997 2024年11月22日

    出版者・発行元: The Electrochemical Society

    DOI: 10.1149/ma2024-027997mtgabs  

    eISSN:2151-2043

    詳細を見る 詳細を閉じる

    1.Introduction Low Coulombic efficiency (CE) of lithium (Li) plating/stripping due to electrolyte decomposition on Li metal negative electrodes is a critical issue in the practical application of Li metal batteries. Our previous study[1] revealed that increasing the concentration of lithium bis(fluorosulfonyl)imide (LiFSI) in organic electrolytes leads to a weakly coordinated environment of Li+ with FSI, which increases Li+ chemical potential (µ Li +) and Li electrode potential (E Li), thus minimizing electrolyte reductive decomposition and achieving high CEs. However, concentrated electrolytes have disadvantages such as high viscosity and high cost. Herein we focused on FSI-inspired solvents with a weakly Li+-coordinating structure of -NSO2F.[2][3] This class of solvents have been studied with a focus on their solid electrolyte interphase (SEI) forming ability similar to LiFSI,[2][3] but there has been no understanding on the µ Li + and E Li in such solvents. We studied the E Li and Li plating/stripping CE in various FSI-inspired solvents and discuss their correlation. 2.Experimental The electrolytes were prepared by dissolving LiFSI in FSI-inspired solvents (diMeFSI; N,N-dimethylsulfamoyl fluoride, EtMeFSI; N-ethyl, N-methylsulfamoyl fluoride, diEtFSI; N,N-diethylsulfamoyl fluoride), FEC; fluoroethylene carbonate, and DME; 1,2-dimethoxyethane at a LiFSI:solvent molar ratio of 1/8 (Figure 1.). A three-electrode cell was used for cyclic voltammetry (CV) with a Pt plate as the working electrode and Li foil as the counter and reference electrodes. Ferrocene (Fc, 1 mM) was dissolved in the electrolytes. E Li was evaluated with reference to the redox potential of Fc as an internal standard. Cu|Li coin cells were used to evaluate Li plating/stripping CEs. Li was plated on Cu for 1 hour and stripped up to 0.5 V at a current density of 0.5 mA cm- 2. 3.Results &amp; Discussion Figure 2. shows E Li in various electrolytes with reference to Fc/Fc+. The E Li values of FSI-inspired solvents were notably higher (-2.9 V vs. Fc/Fc+) than FEC or DME even at the same LiFSI:solvent molar ratios (1/8). This is due to the weakly Li+-solvating nature of the FSI--inspired solvents, which was also supported by DFT calculations. Figure 3. shows the average Li plating/stripping CEs of 2~20 cycles in various electrolytes. For diMeFSI, EtMeFSI, diEtFSI, DME, and FEC, the LiFSI/solvent ratios were 1/8. The data of other various electrolytes (limited to salt concentrations below 2 M) are reproduced from our previous publication[1] and shown as black dots. Among such dilute electrolytes, the highest E Li (-2.92 V) and the highest CE can be both achieved in diMeFSI electrolytes. This suggests that introducing such an FSI structure into solvents is a promising way to not only forming a better FSI-derived SEI but also upshifting the E Li for highly efficient Li metal anodes. 4 .References [1] S. Ko et al., Nat. Energy, 7, 1217 (2022). [2] W. Xue et al., Energy Environ. Sci., 13, 212 (2020). [3] K. Jiang et al., ACS Energy Lett. 7, 3378 (2022). 5.Acknowledgement This work was partially supported by JSPS KAKENHI Grant-in-Aid for Transformative Research Areas (B) (23H03824, 23H03827). Figure 1 <p></p>

  31. Redox-Active Metal-Organic Framework As an Anode-Active Material for Rechargeable Air Batteries 査読有り

    Ryota Akai, Hitoshi Kasai, Kouki Oka

    ECS Meeting Abstracts MA2024-02 (67) 4399-4399 2024年11月22日

    出版者・発行元: The Electrochemical Society

    DOI: 10.1149/ma2024-02674399mtgabs  

    eISSN:2151-2043

    詳細を見る 詳細を閉じる

    [Introduction] Rechargeable batteries for the storage of electrical energy are required for the introduction of renewable energy and compact electronic devices for the sustainable society.[1] Although lithium-ion batteries currently dominate the market, rechargeable metal–air batteries with very high energy densities have been attracting attention due to increasing power consumption and demand for low environmental burden. They are composed of oxygen from air as the cathode-active material, metal as the anode-active material and a strong alkaline solution as the electrolyte. They have the advantage of high energy density and low environmental burden due to the use of oxygen as the cathode-active material. While primary Zn–air batteries are commercialized, rechargeable metal–air batteries are under investigation due to their low cycle performance caused by dendrites and metal oxides formed on the metal anode, which leads to disposal of anode-active materials. In addition, strong basic electrolytes are used due to their high ionic conductivity, and the carbonate clogging by carbon dioxide in the air is also a problem. Therefore, rechargeable air batteries, which consist of acid or neutral electrolyte and anode-active materials which is recyclable and do not form dendrites or metal oxides, are required. Organic redox molecules, which are reversibly redox-active organic compounds, are composed of earth-abundant and relatively available building blocks (C, H, N, O, and S), and their functions can be tuned by molecular design, which has attracted attention as new electrode-active materials. We have previously reported that rechargeable polymer–air batteries using an organic redox polymer with organic redox molecules in the side chain of polymer as the anode-active material and acidic aqueous solution as the electrolyte charged and discharged without the formation of dendrites or carbonates.[2] However, organic materials suffer from low durability, and organic redox materials with structural stability in the electrolyte have been required. In the current work, we focused on UiO-66, a metal-organic framework with structural stability in acid and base electrolyte, and synthesized UiO-66-(OH2) with 1,4-dihydroxybenzene, an organic redox molecule as a linker, which undergoes a reversible redox reaction even in acid electrolytes. An anode-active material composed of UiO-66-(OH2) did not form dendrites or metal oxides in H2SO4 aqueous electrolyte (pH 1) and exhibited charge storage with high cycle stability. A rechargeable acidic MOF–air battery was demonstrated for the first time. After use, UiO-66-(OH2) electrode was facilely decomposed and separated to the original raw chemicals by NH4HCO3 aqueous solution. [Results and Discussion] We synthesized UiO-66-(OH2) from zirconium(IV) chloride and 2,5-dihydroxyterephthalic acid by microwave irradiation. UiO-66-(OH2) was coated on a glassy carbon plate in the presence of single-walled carbon nanotube as the conductive additive. The UiO-66-(OH2) electrode exhibited charging-discharging curves of a plateau voltage at 0.2 V, and the ratio of discharging vs. charging capacity (i.e. coulombic efficiency) were nearly 96%. The high capacity of the UiO-66-(OH2) electrode suggested that almost all of the -OH moieties contributed to charge storage. Even after 300 cycles, UiO-66-(OH2) electrode exhibited high cycle performance, which was relatively robust compared to other n-type redox materials for rechargeable aqueous air batteries. These results demonstrated that UiO-66-(OH2) has high cycle stability as an anode-active material for rechargeable acidic MOF-air batteries. A rechargeable acidic MOF-air battery was fabricated with a UiO-66-(OH2), Pt/C, and H2SO4 aqueous electrolyte (pH 1) as the anode material, cathode material, and electrolyte, respectively. The coulombic efficiencies of the battery were nearly 97%, demonstrating the reversible charge storage property of the cell. The high capacity for the anode suggested that almost all of the -OH moieties contributed to charge storage. Even after 100 charging-discharging cycles, the battery kept the high discharging capacity even at a rapid discharging. These results demonstrated the long-life ability of the rechargeable acidic MOF-air battery. UiO-66-(OH2) electrode in the battery was facilely decomposed and separated to the original raw chemicals by NH4HCO3 aqueous solution after charging and discharging. [Conclusions] We synthesized UiO-66-(OH2), which is stable in aqueous electrolyte, and applied it to an anode-active material. The rechargeable acidic MOF-air battery exhibited high cycle performance without the formation of dendrites or carbonates. In addition, we successfully recycled UiO-66-(OH2) electrode after charging and discharging. The current work presented a first step for developing electrode materials for the future energy storage. [References] [1] J. Kim, Y. Kim, J. Yoo, G. Kwon, K. Kang et al., Nat. Rev. Mater. , 8, 54–70, 2023. [2] K. Oka, S. Furukawa, S. Murao, H. Nishide, K. Oyaizu et al., Chem. Commun. , 56, 4055–4058, 2020. Figure 1 <p></p>

  32. Alkyl-Ether Group-Modified Anthraquinone-Based Negative Electrode for Enhanced Electrochemical Performance of All Solid-State Rechargeable Air Batteries 査読有り

    Lin Guo, Kenji Miyatake, Suguru Wada, Kouki Oka, Showa Kitajima, Hitoshi Kasai, Ryota Tanaka, Hiroaki Imoto, Kensuke Naka, Fang Xian, Fanghua Liu, Ahmed Mohamed Ahmed Mahmoud, Vikrant Yadav, Chun Yik Wong

    ACS Sustainable Chemistry &amp; Engineering 12 (45) 16518-16523 2024年11月1日

    出版者・発行元: American Chemical Society (ACS)

    DOI: 10.1021/acssuschemeng.4c05143  

    ISSN:2168-0485

    eISSN:2168-0485

  33. An ionic liquid containing arsonium cation 査読有り

    Ryoto Inaba, Tomohiro Imai, Showa Kitajima, Hitoshi Kasai, Kouki Oka, Ryoyu Hifumi, Ikuyoshi Tomita, Masahiro Yoshizawa-Fujita, Kensuke Naka, Hiroaki Imoto

    Chemical Communications 2024年10月

    出版者・発行元: Royal Society of Chemistry (RSC)

    DOI: 10.1039/d4cc05072j  

    ISSN:1359-7345

    eISSN:1364-548X

    詳細を見る 詳細を閉じる

    Cations in ionic liquids (ILs) are typically derived from ammonium or phosphonium structures with long alkyl chains, and it is well established that the central atom significantly influences the properties...

  34. Photodynamic antimicrobial activity of polydiacetylene crystal nanostructure against E. coli 査読有り

    Mohammad Oves, Ryuju Suzuki, Hirotaka Nakatsuji, Yoshitaka Koseki, Sanjay Kumar, Kouki Oka, Hitoshi Kasai

    MRS Communications 2024年8月8日

    出版者・発行元: Springer Science and Business Media LLC

    DOI: 10.1557/s43579-024-00622-8  

    eISSN:2159-6867

  35. Highly Fluorinated Nanospace in Porous Organic Salts with High Water Stability/Capability and Proton Conductivity 査読有り

    Takahiro Ami, Showa Kitajima, Kouki Oka, Norimitsu Tohnai

    Angewandte Chemie 2024年6月20日

    出版者・発行元: Wiley

    DOI: 10.1002/ange.202407484  

    ISSN:0044-8249

    eISSN:1521-3757

    詳細を見る 詳細を閉じる

    Water in hydrophobic nanospaces shows specific dynamic properties different from bulk water. The investigation of these properties is important in various research fields, including materials science, chemistry, and biology. The elucidation of the correlation between properties of water and hydrophobic nanospaces requires nanospaces covered only with simple hydrophobic group (e.g., fluorine) without impurities such as metals. This work successfully fabricated all‐organic diamondoid porous organic salts (d‐POSs) with highly fluorinated nanospaces, wherein hydrophobic fluorine atoms are densely exposed on the void surfaces, by combining fluorine substituted triphenylmethylamine (TPMA) derivatives with tetrahedral tetrasulfonic acid. This d‐POSs with a highly fluorinated nanospace significantly improved their water stability, retaining their crystal structure even when immersed in water over one week. Moreover, this highly hydrophobic and fluorinated nanospace adsorbs 160 mL(STP)/g of water vapor at Pe/P0 = 0.90; this is the first hydrophobic nanospace, which water molecules can enter, in an all‐organic porous material. Furthermore, this highly fluorinated nanospace exhibits very high proton conductivity (1.34 × 10−2 S/cm) at 90°C and 95%RH. POSs with tailorable nanospaces may significantly advance the elucidation of the properties of specific “water” in pure hydrophobic environments.

  36. Unlocking the Charge‐storage Potential of a Phenanthraquinone‐based Two‐dimensional Covalent Organic Framework (2D COF) 査読有り

    Tyran Günther, Daniel Hedbom, Michelle Åhlén, Haruka Yoshino, Hitoshi Miyasaka, Hitoshi Kasai, Kouki Oka, Rikard Emanuelsson

    ChemPlusChem 2024年6月4日

    出版者・発行元: Wiley

    DOI: 10.1002/cplu.202400184  

    ISSN:2192-6506

    eISSN:2192-6506

    詳細を見る 詳細を閉じる

    The high surface area, open pore‐structure and atomic‐level organization inherent in many covalent organic frameworks (COFs) make them an attractive polymer platform for developing functional materials. Herein, a chemically robust 2D COF (TpOMe‐DAPQ COF) containing phenanthraquinone moieties was prepared by condensing 2,4,6‐trimethoxy‐1,3,5‐benzenetricarbaldehyde (TpOMe) and 2,7‐diamino‐9,10‐phenanthraquinone (DAPQ) using the convenient mechanochemical method. The poor charge‐storage capacity of the pristine TpOMe‐DAPQ COF was substantially improved by first investigating its redox‐site accessibility (RSA) using different conductivity‐enhancement methods, and then optimizing the amount of EDOT needed to perform an in‐situ polymerization. The resulting composite (0.4EDOT@TpOMe‐DAPQ) was characterized and its enhanced charge‐storage capabilities enabled it to be used as an anode material in an aqueous Mn beaker‐cell battery capable of delivering 0.76 V. This work outlines the rational design approach used to develop a functional charge‐storage material utilizing a COF‐based polymerization platform.

  37. Redox‐active organic molecules supported by polyhedral oligomeric silsesquioxane 査読有り

    Ryota Tanaka, Showa Kitajima, Norimitsu Tohnai, Kouki Oka, Hiroaki Imoto, Kensuke Naka

    ChemNanoMat 2024年3月27日

    出版者・発行元: Wiley

    DOI: 10.1002/cnma.202400122  

    ISSN:2199-692X

    eISSN:2199-692X

    詳細を見る 詳細を閉じる

    Organic redox molecules have attracted considerable attention because of their abundant availability and excellent design flexibility. For practical applications, these molecules must be anchored onto scaffolds such as polymers to prevent crystallization and elution into the electrolyte. In this study, we explore the use of polyhedral oligomeric silsesquioxane (POSS) derivatives as scaffolds for anthraquinone (AQ) and hydroquinone. We investigated the cage structure of POSS and the number of redox units incorporated. Notably, a corner‐opened POSS (CO‐POSS) variant with three AQ units exhibited reversible redox behavior under neutral, acidic, and basic conditions. Furthermore, we examined the air‐battery performance of AQ‐modified CO‐POSS as an anode‐active material.

  38. Spirobifluorene‐Based Porous Organic Salts: Their Porous Network Diversification and Construction of Chiral Helical Luminescent Structures 査読有り

    Kohei Okubo, Kouki Oka, Keiho Tsuchiya, Atsunori Tomimoto, Norimitsu Tohnai

    Angewandte Chemie 2024年2月16日

    出版者・発行元: Wiley

    DOI: 10.1002/ange.202400475  

    ISSN:0044-8249

    eISSN:1521-3757

    詳細を見る 詳細を閉じる

    Abstract Porous organic salts (POSs) are organic porous materials assembled via charge‐assisted hydrogen bonds between strong acids and bases such as sulfonic acids and amines. To diversify the network topology of POSs and extend its functions, this study focused on using 4,4′,4′′,4′′′‐(9,9′‐spirobi[fluorene]‐2,2′,7,7′‐tetrayl)tetrabenzenesulfonic acid (spiroBPS), which is a tetrasulfonic acid comprising a square planar skeleton. The POS consisting of spiroBPS and triphenylmethylamine (TPMA) (spiroBPS/TPMA) was constructed from the two‐fold interpenetration of an orthogonal network with pts topology, which has not been reported in conventional POSs, owing to the shape of the spirobifluorene backbone. Furthermore, combining tris(4‐chlorophenyl)methylamine (TPMA‐Cl) and tris(4‐bromophenyl)methylamine (TPMA‐Br), which are bulkier than TPMA owing to the introduction of halogens at the p‐position of the phenyl groups with spiroBPS allows us to construct novel POSs (spiroBPS/TPMA‐Cl and spiroBPS/TPMA‐Br). These POSs were constructed from a chiral helical network with pth topology, which was induced by the steric hindrance between the halogens and the curved fluorene skeleton. Moreover, spiroBPS/TPMA‐Cl with pth topology exhibited circularly polarized luminescence (CPL) in the solid state, which has not been reported in hydrogen‐bonded organic frameworks (HOFs).

  39. Breathing Metal–Organic Frameworks Supported by an Arsenic-Bridged 4,4′-Bipyridine Ligand 査読有り

    Kazuma Kikuchi, Hiroi Sei, Kohei Okubo, Norimitsu Tohnai, Kouki Oka, Shun Dekura, Takashi Kikuchi, Hiroaki Imoto, Kensuke Naka

    Inorganic Chemistry 2024年2月16日

    出版者・発行元: American Chemical Society (ACS)

    DOI: 10.1021/acs.inorgchem.3c04570  

    ISSN:0020-1669

    eISSN:1520-510X

  40. Incorporation of deuterated coronene into cage-like sodalite-type porous organic salts and improvement of room-temperature phosphorescence properties 査読有り

    Hiroi Sei, Kouki Oka, Tomoki Furuta, Norimitsu Tohnai

    Bulletin of the Chemical Society of Japan 97 (2) 2024年2月10日

    出版者・発行元: Oxford University Press (OUP)

    DOI: 10.1093/bulcsj/uoad023  

    ISSN:0009-2673

    eISSN:1348-0634

    詳細を見る 詳細を閉じる

    Abstract Host materials with external heavy atom effects do not change the chemical structures of incorporated luminescent molecules but promote intersystem crossing from the excited singlet state to the excited triplet state, which induces room-temperature phosphorescence (RTP). The deuteration of luminescent molecules suppresses non-radiative deactivation via C–H stretching vibration; therefore, the improvement of both phosphorescence lifetime and quantum efficiency (i.e. isotope effect) is expected. Although a combination of the external heavy atom effect and isotope effect could be expected to improve phosphorescent performances dramatically, an environment with a strong external heavy atom effect (density of iodine atoms ≥0.65 gcm−3) increases non-radiative deactivation via spin-orbit coupling; therefore, the isotope effect is hindered, and the phosphorescent lifetime and quantum efficiency are not usually improved. In the current work, we constructed cage-like sodalite-type porous organic salts (s-POSs) where the density of iodine atoms (0.55 gcm−3) was moderate (0.13 ̶ 0.65 gcm−3). Incorporation of a deuterated representative luminescent molecule such as coronene (coronene-d12) into s-POSs enabled the exerting of both the external heavy atom effect and isotope effect, which successfully improved both RTP lifetime (1.1 times) and quantum efficiency (1.6 times) over those of an incorporated ordinary coronene (coronene-h12).

  41. Construction of Triptycene Molecular Rotors with Intermeshing Arrangement and Low Rotational Barrier 査読有り

    Tomoki Furuta, Kouki Oka, Norimitsu Tohnai

    Bulletin of the Chemical Society of Japan 2024年2月8日

    出版者・発行元: Oxford University Press (OUP)

    DOI: 10.1093/bulcsj/uoae013  

    ISSN:0009-2673

    eISSN:1348-0634

    詳細を見る 詳細を閉じる

    Abstract Molecular rotors are one of the building blocks of molecular machines and are nano-sized machines with mechanically rotating moieties. Among them, intermeshing triptycenes with a gear-like skeleton allows the construction of a molecular rotor that transmits rotational motion. For triptycenes to mesh with each other without loss of rotation, intermeshing them in parallel and adjusting the distance between their axis to 8.1 Å are required. However, with conventional methods, because of the restrictions on bond lengths and atomic radius, achieving an ideal arrangement in which the triptycenes mesh in parallel at 8.1 Å has been difficult. In this work, we synthesized disulfonic acid containing a triptycene as a rotator, and combining it with amines of two different steric factors (normal-amylamine (nAmA) and guanidine (Gu)) allowed us to prepare organic salts with varying arrangements of triptycene. In the organic salt with the planar amine (Gu), the crystal structure was close to the ideal intermeshing arrangement of triptycene, and the distance between their axis was 7.7 Å. The T1ρ  13C spin-lattice relaxation time by solid-state NMR demonstrated that triptycene rotates efficiently at 24 kHz at 313 K with a low rotational barrier (10.9 kcal/mol) compared to non-intermeshing structures.

  42. An Expanded Hydrogen-bonded Organic Framework Formed by A Tetrakis(terphenyl)ethene Derivative 査読有り

    Mao Yamaguchi, Mario de la Hoz Tomás, Ayano Fujiwara, Ryusei Oketani, Kohei Okubo, Kouki Oka, Norimitsu Tohnai, Abderrazzak Douhal, Ichiro Hisaki

    Bulletin of the Chemical Society of Japan 2024年1月23日

    出版者・発行元: Oxford University Press (OUP)

    DOI: 10.1093/bulcsj/uoae004  

    ISSN:0009-2673

    eISSN:1348-0634

    詳細を見る 詳細を閉じる

    Abstract A low-density hydrogen-bonded organic framework (HOF) with channel aperture with dimension of 33.8 Å × 55.2 Å was constructed from a tetrakis(terphenyl)ethene derivative. The structure was successfully characterized by single crystalline X-ray diffraction analysis. Although solvent molecules are included in the channel, the present framework is one of the HOFs with the largest aperture. The framework is based on H-bonded sql-network that stacks in eclipse fashion. The interlayer interactions were thoroughly investigated on the basis of the crystal structure. Interestingly, tetraarylethene-based three analogous tetracarboxylic acids including the title compounds formed the same H-bonded sql-network as a lower-dimensional supramolecular motif, while the motifs are assembled in completely different ways to give the corresponding three types of the framework, indicating the importance of precise design of the secondary interactions between the lower dimensional motifs. In solid state, the molecular unit of the constructed HOF shows a largely Stokes shifted and strong emission due to a fast (&amp;lt; 15 ps) ICT and a relatively slower (90 ps) intermolecular PT reaction, while in DMF is exhibits a strong H-bond with the solvent.

  43. Ice-Like Dynamics of Water Clusters 査読有り

    Kouki Oka, Hiroshi Akiba, Norimitsu Tohnai, Toshimichi Shibue, Osamu Yamamuro

    The Journal of Physical Chemistry Letters 15 (1) 267-271 2024年1月2日

    出版者・発行元: American Chemical Society (ACS)

    DOI: 10.1021/acs.jpclett.3c02754  

    ISSN:1948-7185

    eISSN:1948-7185

  44. Anticancer nano-prodrugs with drug release triggered by intracellular dissolution and hydrogen peroxide response

    Aki Shibata, Yoshitaka Koseki, Keita Tanita, Showa Kitajima, Kouki Oka, Kiyotaka Maruoka, Ryuju Suzuki, Anh Thi Ngoc Dao, Hitoshi Kasai

    Chemical Communications 60 (50) 6427-6430 2024年

    出版者・発行元: Royal Society of Chemistry (RSC)

    DOI: 10.1039/d4cc02252a  

    ISSN:1359-7345

    eISSN:1364-548X

    詳細を見る 詳細を閉じる

    We developed prodrug nanoparticles that release drugs through intracellular dissolution and a cancer-specific hydrogen peroxide response.

  45. Network Topology Diversification of Porous Organic Salts 査読有り

    Hiroi Sei, Kouki Oka, Yuta Hori, Yasuteru Shigeta, Norimitsu Tohnai

    Chemical Science 2024年

    出版者・発行元: Royal Society of Chemistry (RSC)

    DOI: 10.1039/d4sc01218f  

    ISSN:2041-6520

    eISSN:2041-6539

    詳細を見る 詳細を閉じる

    Hydrogen-bonded organic frameworks (HOFs) are porous organic materials constructed via hydrogen bonds. HOFs have solubility for specific high-polar organic solvents, and return to their components, which indicates their high recyclability....

  46. Cation Recognition by Dibenzoarsacrowns

    Kenta Ogawa, Akifumi Sumida, Takahiro Ami, Kouki Oka, Norimitsu Tohnai, Yusuke Miyake, Hiroaki Imoto, Kensuke Naka

    Asian Journal of Organic Chemistry 2023年11月6日

    出版者・発行元: Wiley

    DOI: 10.1002/ajoc.202300525  

    ISSN:2193-5807

    eISSN:2193-5815

    詳細を見る 詳細を閉じる

    We recently reported dibenzoarsacrowns as a novel class of host molecules, and in this work, prepared four dibenzoarsacrowns:12‐dibenzoarsacrown‐4, 15‐dibenzoarsacrown‐5, 18‐dibenzoarsacrown‐6, and 21‐dibenzoarsacrown‐7, and investigated their guest recognition behaviors for alkali metal and ammonium cations (Li+, Na+, K+, and NH4+). It was found that the triphenylarsine moiety of the dibenzoarsacrowns could be electrochemically oxidized and that their oxidation potentials shifted in response to perturbation because of the weak interaction between the arsenic atom and guest cations. Thus, dibenzoarsacrowns could electrochemically detect cations with sizes that fit the host cavity. Electron spin resonance measurements revealed the generation of cation radical species of arsenic under the application of voltage and supported the idea that the interaction between the arsenic atom and guest cations played a crucial role in the detection of cations. In addition, ion chromatography studies showed that size‐selective cation recognition by dibenzoarsacrowns was achievable even in aqueous solutions.

  47. Control of Relative Positions of Electron‐Donor and Electron‐Acceptor Molecules in Charge‐Transfer Complexes for Luminescent Property Modulation

    Yo Kinoshita, Kouki Oka, Hiromi Nakajima, Norimitsu Tohnai

    Chemistry – A European Journal 2023年10月24日

    出版者・発行元: Wiley

    DOI: 10.1002/chem.202302965  

    ISSN:0947-6539

    eISSN:1521-3765

    詳細を見る 詳細を閉じる

    Charge‐transfer complexes can exhibit various physical properties, which depend on the relative positions of electron‐donor and electron‐acceptor molecules. Several studies have investigated the relationship between the relative positions of electron‐donor and electron‐acceptor molecules and their luminescence properties. However, elucidating the pure correlation between the relative positions and detailed luminescence processes without changing their molecular structures has been unexplored. Herein, we report the relative‐position‐control based on charge‐assisted hydrogen bonds between sulfo and amino groups and on alkylamines’ steric factors, and report concomitant luminescent property modulation. From anthracene‐2,6‐disulfonic acid and 1,2,4,5‐tetracyanobenzene as electron‐donor and electron‐acceptor molecules, and various alkylamines, six charge‐transfer complexes were prepared. Different alkylamines' steric factors drastically and precisely changed the relative positions of the electron‐donor and electron‐acceptor molecules without changing their molecular structures. Consequently, the six crystals exhibited maximum emission wavelengths from 543 to 624 nm and different luminescence processes.

  48. Redox-site accessibility of composites containing a 2D redox-active covalent organic framework: from optimization to application 査読有り

    Kouki Oka, Norimitsu Tohnai, Rikard Emanuelsson

    11 (26) 13798-13798 2023年7月

    出版者・発行元:

    DOI: 10.1039/d3ta90135a  

    ISSN:2050-7488

    eISSN:2050-7496

  49. Redox-site accessibility of composites containing a 2D redox-active covalent organic framework: from optimization to application 査読有り

    Tyran Günther, Kouki Oka, Sandra Olsson, Michelle Åhlén, Norimitsu Tohnai, Rikard Emanuelsson

    Journal of Materials Chemistry A 11 (26) 13923-13931 2023年7月

    出版者・発行元: Royal Society of Chemistry (RSC)

    DOI: 10.1039/d3ta00422h  

    ISSN:2050-7488

    eISSN:2050-7496

    詳細を見る 詳細を閉じる

    A systematic method is presented which demonstrates how accessing more redox-active sites in a poorly conducting 2D COF can be done in a rational manner. An optimised and dramatically improved charge-storage composite was produced using this method.

  50. Porous Organic Salts Composed of Terphenyl Sulfonic Acid and Their Bottleneck Designability 査読有り

    Ryota Akai, Kouki Oka, Naoki Okada, Takahiro Ami, Norimitsu Tohnai

    European Journal of Organic Chemistry 2023年6月12日

    出版者・発行元: Wiley

    DOI: 10.1002/ejoc.202300417  

    ISSN:1434-193X

    eISSN:1099-0690

  51. Incorporation of Coronene into Cage‐like Porous Organic Salts and Induction of its Room‐Temperature Phosphorescence in Air 査読有り

    Hiroi Sei, Kouki Oka, Norimitsu Tohnai

    ChemNanoMat 2023年6月6日

    出版者・発行元: Wiley

    DOI: 10.1002/cnma.202300248  

    ISSN:2199-692X

    eISSN:2199-692X

  52. All‐Solid‐State Rechargeable Air Batteries Using Dihydroxybenzoquinone and Its Polymer as the Negative Electrode 査読有り

    Makoto Yonenaga, Yusuke Kaiwa, Kouki Oka, Kenichi Oyaizu, Kenji Miyatake

    Angewandte Chemie International Edition 2023年6月2日

    出版者・発行元: Wiley

    DOI: 10.1002/anie.202307351  

    ISSN:1433-7851

    eISSN:1521-3773

  53. Accelerated Oxidative Degradation of Phosphonium-Type Ionic Liquid with <scp>l</scp>-Prolinate Anion: Degradation Mechanism and CO2 Separation Performance 査読有り

    Hiroi Sei, Yu Nagai Kanasaki, Kouki Oka, Norimitsu Tohnai, Yuki Kohno, Takashi Makino

    ACS Omega 2023年5月31日

    出版者・発行元: American Chemical Society (ACS)

    DOI: 10.1021/acsomega.3c02116  

    ISSN:2470-1343

    eISSN:2470-1343

  54. All‐Solid‐State Rechargeable Air Batteries Using Dihydroxybenzoquinone and Its Polymer as the Negative Electrode 査読有り

    Makoto Yonenaga, Yusuke Kaiwa, Kouki Oka, Kenichi Oyaizu, Kenji Miyatake

    Angewandte Chemie 2023年5月2日

    出版者・発行元: Wiley

    DOI: 10.1002/ange.202304366  

    ISSN:0044-8249

    eISSN:1521-3757

  55. All‐Solid‐State Rechargeable Air Batteries Using Dihydroxybenzoquinone and Its Polymer as the Negative Electrode 査読有り

    Makoto Yonenaga, Yusuke Kaiwa, Kouki Oka, Kenichi Oyaizu, Kenji Miyatake

    Angewandte Chemie International Edition 2023年5月2日

    出版者・発行元: Wiley

    DOI: 10.1002/anie.202304366  

    ISSN:1433-7851

    eISSN:1521-3773

  56. Precise Control of the Molecular Arrangement of Organic Semiconductors for High Charge Carrier Mobility 査読有り

    Ryota Akai, Kouki Oka, Shun Dekura, Kazuyoshi Yoshimi, Hatsumi Mori, Ryosuke Nishikubo, Akinori Saeki, Norimitsu Tohnai

    The Journal of Physical Chemistry Letters 3461-3467 2023年4月3日

    出版者・発行元: American Chemical Society (ACS)

    DOI: 10.1021/acs.jpclett.3c00334  

    ISSN:1948-7185

    eISSN:1948-7185

  57. Cage‐Like Sodalite‐Type Porous Organic Salts Enabling Luminescent Molecule's Incorporation and Room‐temperature Phosphorescence Induction in Air 査読有り

    Hiroi Sei, Kouki Oka, Hikaru Sotome, Hiroshi Miyasaka, Norimitsu Tohnai

    Small 2023年3月26日

    出版者・発行元: Wiley

    DOI: 10.1002/smll.202301887  

    ISSN:1613-6810

    eISSN:1613-6829

  58. 3,11‐Diaminodibenzo[ a,j ]phenazine: Synthesis, Properties, and Applications to Tröger's Base‐Forming Ladder Polymerization 査読有り

    Saika Izumi, Keiki Inoue, Yuya Nitta, Tomoya Enjou, Takahiro Ami, Kouki Oka, Norimitsu Tohnai, Satoshi Minakata, Takanori Fukushima, Fumitaka Ishiwari, Youhei Takeda

    Chemistry – A European Journal 29 (14) 2023年2月8日

    出版者・発行元: Wiley

    DOI: 10.1002/chem.202202702  

    ISSN:0947-6539

    eISSN:1521-3765

  59. Design of a Robust and Strong-Acid MOF Platform for the Selective Ammonium Recovery and Proton Conductivity 査読有り

    Teppei Yamada, Genki Hatakeyama, Hongyao Zhou, Takashi Kikuchi, Masaki Nishio, Kouki Oka, Masaaki Sadakiyo, Yusuke Nishiyama

    Chemical Science 2023年

    出版者・発行元: Royal Society of Chemistry (RSC)

    DOI: 10.1039/d3sc02743k  

    ISSN:2041-6520

    eISSN:2041-6539

    詳細を見る 詳細を閉じる

    Metal–organic frameworks (MOFs) are potential candidates for the platform of the solid acid; however, no MOF has been reported, which has both aqueous ammonium stability and a strong acid site....

  60. Statically and Dynamically Flexible Hydrogen-bonded Frameworks Based on 4,5,9,10-Tetrakis(4-carboxyphenyl)pyrene 査読有り

    Taito Hashimoto, Ryusei Oketani, Asato Inoue, Kohei Okubo, Kouki Oka, Norimitsu Tonai, Kazuhide Kamiya, Shuji Nakanishi, Ichiro Hisaki

    Chemical Communications 2023年

    出版者・発行元: Royal Society of Chemistry (RSC)

    DOI: 10.1039/d3cc01877f  

    ISSN:1359-7345

    eISSN:1364-548X

    詳細を見る 詳細を閉じる

    In this communication, we described static and dynamic flexibility of a HOF composed of tetratopic carboxylic acid CP-Py. Void spaces of the framework can be statically modulated upon including different...

  61. Accelerating the dehydrogenation reaction of alcohols by introducing them into poly(allylamine)

    Kouki Oka, Yusuke Kaiwa, Kazuki Kobayashi, Yuka Tobita, Kenichi Oyaizu

    Polymer Chemistry 14 (21) 2588-2591 2023年

    出版者・発行元: Royal Society of Chemistry (RSC)

    DOI: 10.1039/d3py00404j  

    ISSN:1759-9954

    eISSN:1759-9962

    詳細を見る 詳細を閉じる

    This paper demonstrated accelerating the dehydrogenation reaction of alcohols by introducing them into poly(allylamine). Contrary to popular belief, the reaction rate was higher by one order of magnitude compared to that in single molecules.

  62. The Introduction of a Base Component to Porous Organic Salts and Their CO2 Storage Capability 査読有り

    Takahiro Ami, Kouki Oka, Keiho Tuchiya, Wataru Kosaka, Hitoshi Miyasaka, Norimitsu Tohnai

    CrystEngComm 25 (15) 2321-2325 2023年

    出版者・発行元: Royal Society of Chemistry (RSC)

    DOI: 10.1039/d3ce00086a  

    eISSN:1466-8033

    詳細を見る 詳細を閉じる

    Porous organic salts (POSs) are constructed by charge-assisted hydrogen bonding between amino and sulfonic groups, and can design a variety of porous structures based on the molecular design. In particular,...

  63. Molecular Arrangement Control of [1]Benzothieno[3,2-b][1]benzothiophene (BTBT) via Charge-Assisted Hydrogen Bond 査読有り

    Ryota Akai, Kouki Oka, Shun Dekura, Hatsumi Mori, Norimitsu Tohnai

    Bulletin of the Chemical Society of Japan 2022年6月15日

    出版者・発行元: The Chemical Society of Japan

    DOI: 10.1246/bcsj.20220134  

    ISSN:0009-2673

    eISSN:1348-0634

  64. Systematic Arrangement Control of Functional Organic Molecules 査読有り

    Ryota Akai, Kouki Oka, Ryunosuke Nishida, Norimitsu Tohnai

    CrystEngComm 24 (23) 4180-4186 2022年5月9日

    出版者・発行元: Royal Society of Chemistry (RSC)

    DOI: 10.1039/d2ce00336h  

    eISSN:1466-8033

    詳細を見る 詳細を閉じる

    Functional organic molecules, especially π-conjugated molecules, have tunable functions according to their molecular design. Since their properties are significantly affected by the overlap of π-orbitals between adjacent molecules as well...

  65. Controlling the Movability and Excimer Formation of Functional Organic Molecules 査読有り

    Ryota Akai, Kouki Oka, Ryunosuke Nishida, Norimitsu Tohnai

    Bulletin of the Chemical Society of Japan 95 (7) 1111-1116 2022年5月7日

    出版者・発行元: The Chemical Society of Japan

    DOI: 10.1246/bcsj.20220107  

    ISSN:0009-2673

    eISSN:1348-0634

  66. Systematic Study of Pnictogen-Fused Heterofluorenes 査読有り

    Ryoto Inaba, Kouki Oka, Takahiro Iwami, Yusuke Miyake, Kunihiko Tajima, Hiroaki Imoto, Kensuke Naka

    Inorganic Chemistry 61 (19) 7318-7326 2022年5月6日

    出版者・発行元: American Chemical Society (ACS)

    DOI: 10.1021/acs.inorgchem.2c00158  

    ISSN:0020-1669

    eISSN:1520-510X

  67. Porous Organic Salts: Diversifying Void Structures and Environments 査読有り

    Takahiro Ami, Kouki Oka, Keiho Tsuchiya, Norimitsu Tohnai

    Angewandte Chemie 2022年5月3日

    出版者・発行元: Wiley

    DOI: 10.1002/ange.202202597  

    ISSN:0044-8249

    eISSN:1521-3757

  68. Poly(vinyl diphenylquinoxaline) as a hydrogen storage material toward rapid hydrogen evolution 査読有り

    Kouki Oka, Miho Kataoka, Hiroyuki Nishide, Kenichi Oyaizu

    MRS Communications 12 (2) 213-216 2022年4月

    出版者・発行元: Springer Science and Business Media LLC

    DOI: 10.1557/s43579-022-00164-x  

    ISSN:2159-6859

    eISSN:2159-6867

  69. Cover Image

    Kouki Oka, Yuka Tobita, Miho Kataoka, Kazuki Kobayashi, Yusuke Kaiwa, Hiroyuki Nishide, Kenichi Oyaizu

    Polymer International 71 (3) 2022年3月

    出版者・発行元: Wiley

    DOI: 10.1002/pi.6379  

    ISSN:0959-8103

    eISSN:1097-0126

  70. Polymers for Safe Hydrogen Storage 査読有り

    Kouki Oka, Yuka Tobita, Miho Kataoka, Kazuki Kobayashi, Yusuke Kaiwa, Hiroyuki Nishide, Kenichi Oyaizu

    Polymer International 71 (3) 2022年3月

    出版者・発行元: Wiley

    DOI: 10.1002/pi.6379  

    ISSN:0959-8103

    eISSN:1097-0126

  71. Hydrophilic isopropanol/acetone‐substituted polymers for safe hydrogen storage 査読有り

    Kouki Oka, Yuka Tobita, Miho Kataoka, Kazuki Kobayashi, Yusuke Kaiwa, Hiroyuki Nishide, Kenichi Oyaizu

    Polymer International 71 (3) 348-351 2022年3月

    出版者・発行元: Wiley

    DOI: 10.1002/pi.6337  

    ISSN:0959-8103

    eISSN:1097-0126

  72. Tetrachlorocatecholates of triarylarsines as a novel class of Lewis acids 査読有り

    Akane Chishiro, Ippei Akioka, Akifumi Sumida, Kouki Oka, Norimitsu Tohnai, Takashi Yumura, Hiroaki Imoto, Kensuke Naka

    Dalton Transactions 51 (36) 13716-13724 2022年

    出版者・発行元: Royal Society of Chemistry (RSC)

    DOI: 10.1039/d2dt02145e  

    ISSN:1477-9226

    eISSN:1477-9234

    詳細を見る 詳細を閉じる

    Tetrachlorocatecholates of triarylarsines have been synthesized as a novel class of pnictogen-mediated Lewis acids. Their Lewis acidities and electronic properties were studied in comparison with the phosphorus and antimony analogues.

  73. Poly(3‐alkylthiophene) Films as Solvent‐Processable Photoelectrocatalysts for Efficient Oxygen Reduction to Hydrogen Peroxide 査読有り

    Kouki Oka, Koichiro Kamimori, Bjorn Winther-Jensen, Hiroyuki Nishide

    Advanced Energy and Sustainability Research 2 (12) 2100103-2100103 2021年12月

    出版者・発行元: Wiley

    DOI: 10.1002/aesr.202100103  

    ISSN:2699-9412

    eISSN:2699-9412

  74. Alcohol-Substituted Vinyl Polymers for Stockpiling Hydrogen 査読有り

    Kouki Oka, Miho Kataoka, Yusuke Kaiwa, Kenichi Oyaizu

    Bulletin of the Chemical Society of Japan 94 (11) 2770-2773 2021年11月15日

    出版者・発行元: The Chemical Society of Japan

    DOI: 10.1246/bcsj.20210283  

    ISSN:0009-2673

    eISSN:1348-0634

  75. Synthesis of vinyl polymers substituted with 2-propanol and acetone and investigation of their reversible hydrogen storage capabilities 査読有り

    Kouki Oka, Yuka Tobita, Miho Kataoka, Saki Murao, Kazuki Kobayashi, Shuhei Furukawa, Hiroyuki Nishide, Kenichi Oyaizu

    Polymer Journal 53 (7) 799-804 2021年7月

    出版者・発行元: Springer Science and Business Media LLC

    DOI: 10.1038/s41428-021-00475-1  

    ISSN:0032-3896

    eISSN:1349-0540

  76. Two States of Water Converge to One State below 215 K 査読有り

    Kouki Oka, Toshimichi Shibue, Natsuhiko Sugimura, Yuki Watabe, Midori Tanaka, Bjorn Winther-Jensen, Hiroyuki Nishide

    The Journal of Physical Chemistry Letters 12 (24) 5802-5806 2021年6月24日

    出版者・発行元: American Chemical Society (ACS)

    DOI: 10.1021/acs.jpclett.1c01132  

    ISSN:1948-7185

    eISSN:1948-7185

  77. Hydrophilic Anthraquinone-Substituted Polymer: Its Environmentally Friendly Preparation and Efficient Charge/Proton-Storage Capability for Polymer–Air Secondary Batteries 査読有り

    Kouki Oka, Saki Murao, Miho Kataoka, Hiroyuki Nishide, Kenichi Oyaizu

    Macromolecules 54 (10) 4854-4859 2021年5月25日

    出版者・発行元: American Chemical Society (ACS)

    DOI: 10.1021/acs.macromol.1c00865  

    ISSN:0024-9297

    eISSN:1520-5835

  78. H 2 O 2 Production: Copolymer of Phenylene and Thiophene toward a Visible‐Light‐Driven Photocatalytic Oxygen Reduction to Hydrogen Peroxide (Adv. Sci. 5/2021) 査読有り

    Kouki Oka, Hiroyuki Nishide, Bjorn Winther‐Jensen

    Advanced Science 8 (5) 2170023-2170023 2021年3月

    出版者・発行元: Wiley

    DOI: 10.1002/advs.202170023  

    ISSN:2198-3844

    eISSN:2198-3844

  79. Facile reversible hydrogenation of a poly(6‐vinyl‐2,3‐dimethyl‐1,2,3,4‐tetrahydroquinoxaline) gel‐like solid 査読有り

    Yusuke Kaiwa, Kouki Oka, Hiroyuki Nishide, Kenichi Oyaizu

    Polymers for Advanced Technologies 32 (3) 1162-1167 2021年3月

    出版者・発行元: Wiley

    DOI: 10.1002/pat.5163  

    ISSN:1042-7147

    eISSN:1099-1581

  80. Copolymer of Phenylene and Thiophene toward a Visible‐Light‐Driven Photocatalytic Oxygen Reduction to Hydrogen Peroxide 査読有り

    Kouki Oka, Hiroyuki Nishide, Bjorn Winther‐Jensen

    Advanced Science 8 (5) 2003077-2003077 2021年3月

    出版者・発行元: Wiley

    DOI: 10.1002/advs.202003077  

    ISSN:2198-3844

    eISSN:2198-3844

  81. An Alternative to Carbon Additives: The Fabrication of Conductive Layers Enabled by Soluble Conducting Polymer Precursors – A Case Study for Organic Batteries 査読有り

    Christian Strietzel, Kouki Oka, Maria Strømme, Rikard Emanuelsson, Martin Sjödin

    ACS Applied Materials & Interfaces 13 (4) 5349-5356 2021年2月3日

    出版者・発行元: American Chemical Society (ACS)

    DOI: 10.1021/acsami.0c22578  

    ISSN:1944-8244

    eISSN:1944-8252

  82. Nonpolar Water Clusters: Proton Nuclear Magnetic Resonance Spectroscopic Evidence for Transformation from Polar Water to Nonpolar Water Clusters in Liquid State 査読有り

    Kouki Oka, Toshimichi Shibue, Natsuhiko Sugimura, Yuki Watabe, Bjorn Winther-Jensen, Hiroyuki Nishide

    The Journal of Physical Chemistry Letters 12 (1) 276-279 2021年1月14日

    出版者・発行元: American Chemical Society (ACS)

    DOI: 10.1021/acs.jpclett.0c02646  

    ISSN:1948-7185

    eISSN:1948-7185

  83. Completely Solar-Driven Photoelectrochemical Water Splitting Using a Neat Polythiophene Film 査読有り

    Kouki Oka, Hiroyuki Nishide, Bjorn Winther-Jensen

    Cell Reports Physical Science 2 (1) 100306-100306 2021年1月

    出版者・発行元: Elsevier BV

    DOI: 10.1016/j.xcrp.2020.100306  

    ISSN:2666-3864

    eISSN:2666-3864

  84. Charge- and Proton-Storage Capability of Naphthoquinone-Substituted Poly(allylamine) as Electrode-Active Material for Polymer–Air Secondary Batteries 査読有り

    Kouki Oka, Saki Murao, Kazuki Kobayashi, Hiroyuki Nishide, Kenichi Oyaizu

    ACS Applied Energy Materials 3 (12) 12019-12024 2020年12月28日

    出版者・発行元: American Chemical Society (ACS)

    DOI: 10.1021/acsaem.0c02178  

    ISSN:2574-0962

    eISSN:2574-0962

  85. Rechargeable proton exchange membrane fuel cell containing an intrinsic hydrogen storage polymer 査読有り

    Junpei Miyake, Yasunari Ogawa, Toshiki Tanaka, Jinju Ahn, Kouki Oka, Kenichi Oyaizu, Kenji Miyatake

    Communications Chemistry 3 (1) 2020年12月

    出版者・発行元: Springer Science and Business Media LLC

    DOI: 10.1038/s42004-020-00384-z  

    eISSN:2399-3669

  86. A Polymer Sheet‐Based Hydrogen Carrier 査読有り

    Kouki Oka, Yusuke Kaiwa, Miho Kataoka, Ken‐ichi Fujita, Kenichi Oyaizu

    European Journal of Organic Chemistry 2020 (36) 5876-5879 2020年9月30日

    出版者・発行元: Wiley

    DOI: 10.1002/ejoc.202001004  

    ISSN:1434-193X

    eISSN:1099-0690

  87. Conducting Redox Polymer as Organic Anode Material for Polymer‐Manganese Secondary Batteries 査読有り

    Kouki Oka, Rebecka Löfgren, Rikard Emanuelsson, Hiroyuki Nishide, Kenichi Oyaizu, Maria Strømme, Martin Sjödin

    ChemElectroChem 7 (15) 3336-3340 2020年8月3日

    出版者・発行元: Wiley

    DOI: 10.1002/celc.202000711  

    ISSN:2196-0216

    eISSN:2196-0216

  88. Reversible Hydrogen Fixation and Release under Mild Conditions by Poly(vinylquinoxaline) 査読有り

    Kouki Oka, Yusuke Kaiwa, Shuhei Furukawa, Hiroyuki Nishide, Kenichi Oyaizu

    ACS Applied Polymer Materials 2 (7) 2756-2760 2020年7月10日

    出版者・発行元: American Chemical Society (ACS)

    DOI: 10.1021/acsapm.0c00338  

    ISSN:2637-6105

    eISSN:2637-6105

  89. Conducting Redox Polymer as a Robust Organic Electrode‐Active Material in Acidic Aqueous Electrolyte towards Polymer–Air Secondary Batteries 査読有り

    Kouki Oka, Christian Strietzel, Rikard Emanuelsson, Hiroyuki Nishide, Kenichi Oyaizu, Maria Strømme, Martin Sjödin

    ChemSusChem 13 (9) 2280-2285 2020年5月8日

    出版者・発行元: Wiley

    DOI: 10.1002/cssc.202000627  

    ISSN:1864-5631

    eISSN:1864-564X

  90. Supercooled Low-Entropy Water Clusters 査読有り

    Kouki Oka, Toshimichi Shibue, Natsuhiko Sugimura, Yuki Watabe, Bjorn Winther-Jensen, Hiroyuki Nishide

    The Journal of Physical Chemistry Letters 11 (9) 3667-3671 2020年5月7日

    出版者・発行元: American Chemical Society (ACS)

    DOI: 10.1021/acs.jpclett.0c00631  

    ISSN:1948-7185

    eISSN:1948-7185

  91. Poly(dihydroxybenzoquinone): Its high-density and robust charge storage capability in rechargeable acidic polymer-air batteries 査読有り

    Kouki Oka, Shuhei Furukawa, Saki Murao, Tatsuya Oka, Hiroyuki Nishide, Kenichi Oyaizu

    Chemical Communications 56 (29) 4055-4058 2020年4月

    DOI: 10.1039/d0cc00660b  

    ISSN:1359-7345

    eISSN:1364-548X

  92. Chapter 4. Radical Polymers for Rechargeable Batteries 査読有り

    Kouki Oka, Hiroyuki Nishide

    Polymer Chemistry Series 137-165 2020年

    出版者・発行元: Royal Society of Chemistry

    DOI: 10.1039/9781788019743-00137  

    ISSN:2044-0804

  93. Long-lived water clusters in hydrophobic solvents investigated by standard NMR techniques 査読有り

    Kouki Oka, Toshimichi Shibue, Natsuhiko Sugimura, Yuki Watabe, Bjorn Winther-Jensen, Hiroyuki Nishide

    Scientific Reports 9 (1) 2019年12月

    出版者・発行元: Springer Science and Business Media LLC

    DOI: 10.1038/s41598-018-36787-1  

    eISSN:2045-2322

  94. Characterization of PEDOT-Quinone conducting redox polymers in water-in-salt electrolytes for safe and high-energy Li-ion batteries 査読有り

    Kouki Oka, Christian Strietzel, Rikard Emanuelsson, Hiroyuki Nishide, Kenichi Oyaizu, Maria Strømme, Martin Sjödin

    Electrochemistry Communications 105 106489-106489 2019年8月

    出版者・発行元: Elsevier BV

    DOI: 10.1016/j.elecom.2019.106489  

    ISSN:1388-2481

  95. Reversible Hydrogen Releasing and Fixing with Poly(Vinylfluorenol) through a Mild Ir‐Catalyzed Dehydrogenation and Electrochemical Hydrogenation 査読有り

    Ryo Kato, Kouki Oka, Keisuke Yoshimasa, Masataka Nakajima, Hiroyuki Nishide, Kenichi Oyaizu

    Macromolecular Rapid Communications 40 (16) 1900139-1900139 2019年8月

    出版者・発行元: Wiley

    DOI: 10.1002/marc.201900139  

    ISSN:1022-1336

    eISSN:1521-3927

  96. Water Splitting: Poly(1,4‐di(2‐thienyl))benzene Facilitating Complete Light‐Driven Water Splitting under Visible Light at High pH (Adv. Energy Mater. 6/2019)

    Kouki Oka, Kanako Noguchi, Takeo Suga, Hiroyuki Nishide, Bjorn Winther‐Jensen

    Advanced Energy Materials 9 (6) 1970017-1970017 2019年2月

    出版者・発行元: Wiley

    DOI: 10.1002/aenm.201970017  

    ISSN:1614-6832

    eISSN:1614-6840

  97. N-Phenyl naphthalene diimide pendant polymer as a charge storage material with high rate capability and cyclability 査読有り

    Subashani Maniam, Kouki Oka, Hiroyuki Nishide

    MRS Communications 7 (4) 967-973 2017年12月1日

    DOI: 10.1557/mrc.2017.127  

    ISSN:2159-6859

    eISSN:2159-6867

︎全件表示 ︎最初の5件までを表示

MISC 1

  1. ピラゾール-4-カルボキシレート配位子を有する二次元Cu(II)配位高分子の構造と物性

    堤咲良, 出倉駿, 出倉駿, 佐藤鉄, 佐藤鉄, 金城克樹, 佐藤卓, 北嶋奨羽, 岡弘樹, 岡弘樹, 笠井均, 笠井均, 芥川智行, 芥川智行

    分子科学討論会講演プログラム&要旨(Web) 18th 2024年

書籍等出版物 4

  1. 持続可能な有機電池の創製

    北嶋 奨羽, 笠井 均, 岡 弘樹

    技術情報協会 月刊車載テクノロジー 2025年3月

  2. Batteries: The Future of Energy Storage

    Ryota Akai, Norimitsu Tohnai, Kouki Oka

    Jenny Stanford Publishing 2024年8月16日

    ISBN: 9815129384

  3. Redox Polymers for Energy and Nanomedicine

    Kouki Oka, Hiroyuki Nishide

    Royal Society of Chemistry 2020年10月

  4. 有機結晶部会ニュースレター No.53 (電荷補助型水素結合に基づく分子配列制御による材料開発)

    赤井 亮太, 岡 弘樹, 藤内 謙光

    公益社団法人 日本化学会 有機結晶部会 2023年1月

講演・口頭発表等 83

  1. Novel Solid-State Organic Catalysts Towards Water-Splitting 招待有り

    Kouki Oka

    Applied Materials & Interfaces Conference (AMIC 2025) 2025年7月3日

  2. 高純度なπ共役高分子薄膜の創製とその界面制御に関する研究 招待有り

    岡 弘樹

    2025年度 第63回日本接着学会年次大会 2025年6月30日

  3. 有機物から電池・触媒・エネルギーをつくる 招待有り

    岡 弘樹

    日本技術士会 統括本部化学部会 講演会 2025年6月28日

  4. 社会問題解決に貢献できる機能性有機材料の創製 招待有り

    岡 弘樹

    JACI 先端化学・材料技術部会 新素材分科会/高選択性反応分科会 現地分科会 2025年5月13日

  5. エネルギー製造・貯蔵・変換・活用を担う革新的な機能性有機材料の開発 招待有り

    岡 弘樹

    名古屋大学 大学院工学研究科 学術講演 2025年4月30日

  6. Development of Innovative Organic Energy Materials 招待有り

    Kouki Oka

    Innovative Materials for Sustainable Energy and Sensor 2025 (IMSE-2025) 2025年3月27日

  7. Development of New Organic Catalytic Material 招待有り

    Kouki Oka

    International Conference on Catalysis and Reaction Engineering 2025 2025年2月13日

  8. 革新的な有機エネルギー材料の創製 招待有り

    岡 弘樹

    先端マテリアル研究交流講演会 2025年2月4日

  9. 環境適合な有機ハイドライドの創出とグリーン水素の製造・貯蔵法の創製 招待有り

    岡 弘樹

    令和6年度新技術説明会 2025年1月16日

  10. Development of Innovative Organic Energy Materials (Plenary Lecture) 招待有り

    Kouki Oka

    Third International Conference on Science and Technology of Advanced Materials (STAM 25) 2025年1月9日

  11. 革新的な有機エネルギー材料の開発 招待有り

    岡 弘樹

    東京農工大学 中村・一川・田中研究室 講演会 2025年1月6日

  12. 環境適合な有機ハイドライドの創出とグリーン水素の製造・貯蔵法の構築 招待有り

    岡 弘樹

    青葉工学振興会賞等受賞者授賞式及び講演会 2024年12月13日

  13. 有機固体研究者による溶液化学への挑戦 招待有り

    岡 弘樹

    第4回溶液化学研究会 若手の会講演会 2024年12月9日

  14. リサイクル可能な革新的機能材料とデバイスの開発 招待有り

    岡 弘樹

    東北テックプラングランプリ2024 2024年11月23日

  15. 機能性高分子の最前線 招待有り

    岡 弘樹

    山梨大学 物理化学特別講義 2024年11月21日

  16. 持続可能な社会実現に向けた革新的な有機エネルギー材料の開発 招待有り

    岡 弘樹

    令和6(2024)年度日本学術振興会育志賞受賞者交流会 2024年11月12日

  17. 研究室紹介 招待有り

    岡 弘樹

    第4回マテリアル・計測ハイブリッド研究センター若手フォーラム 2024年11月6日

  18. Development of New Organic Functional Materials 招待有り

    Kouki Oka

    Thailand-Japan Symposium in Chemistry 2024年11月3日

  19. 我が国の将来を担う機能性有機材料の開発 招待有り

    岡 弘樹

    『現代の生命科学』特別講義 2024年11月1日

  20. 環境適合な有機ハイドライドの創出とグリーン水素の製造・貯蔵法の構築 招待有り

    岡 弘樹

    国民との対話 (早稲田高等学院) 2024年11月1日

  21. Development of Innovative Organic Energy Materials 招待有り

    Kouki Oka

    9TH JAPAN-THAI WORKSHOP ON THEORETICAL AND COMPUTATIONAL CHEMISTRY 2024 2024年10月11日

  22. Organic π-Conjugated Polymers as a Photoelectrocatalyst for Water-Splitting

    Kouki Oka

    PRiME 2024 2024年10月7日

  23. エネルギーの創・蓄・変・活を担う革新的な機能性有機材料の開発 招待有り

    岡 弘樹

    若手研究者研究交流会 2024年9月30日

  24. クリーンエネルギー製造を担う 有機材料の開発 招待有り

    岡 弘樹

    先端化学・材料技術部会 高選択性反応分科会 講演会 2024年8月30日

  25. 高分解能パルス冷中性子分光器による水クラスターのダイナミクスの解明 招待有り

    岡 弘樹

    第80回放射線科学研究会 2024年8月20日

  26. 持続可能な社会実現に向けた有機エネルギー材料の開発 招待有り

    岡 弘樹

    技術士業務研究会7月例会講演 2024年7月12日

  27. Organic Energy Materials Towards a Sustainable Society 招待有り

    Kouki Oka

    The Second Symposium for Young Chemists: Innovation and Sustainability (SYNC 2024) 2024年6月24日

  28. 技術シーズの産業化に向けて~大学発ベンチャーの立ち上げおよび企業内における研究事業化の支援に特化した取り組み~ 招待有り

    岡 弘樹

    化学工学会第89年会 2024年3月19日

  29. 地球温暖化の緩和に向けた高酸化耐性のCO2吸着剤の創製 招待有り

    岡 弘樹

    市村清新技術財団 贈呈式 2024年2月13日

  30. Organic π-Conjugated Polymers as a Photoelectrocalyst towards Water-Splitting 招待有り

    Kouki Oka

    MRM2023/IUMRS-ICA2023 2023年12月14日

  31. 革新的な”有機エネルギー材料”の創製 招待有り

    岡 弘樹

    上智大学 理工学部 物質生命理工学科 コロキウム 2023年12月8日

  32. 革新的な"有機エネルギー材料"の創製 ~反応から材料開発まで~ 招待有り

    岡 弘樹

    横浜市立大学 講演会 2023年12月7日

  33. Development of Organic Materials Towards Sustainable Energy Applications 招待有り

    Kouki Oka

    Carbon Chemistry Conferences 2023 2023年10月23日

  34. Development of Innovative Organic Energy Materials towards a Sustainable Society 招待有り

    Kouki Oka

    The 72nd Symposium on Macromolecules JAPAN-KOREA JOINT SESSION 2023年9月26日

  35. π共役高分子の革新的触媒能の開拓 招待有り

    岡 弘樹

    第132回触媒討論会 「水素+天然ガス+燃料電池+コンピュータ+元素」研究会横断若手シンポジウム 2023年9月13日

  36. エネルギー問題解決に貢献する新しい機能性有機材料の創製 招待有り

    岡 弘樹

    九州大学薬学部 講演会 2023年8月30日

  37. 機能性有機材料の水素貯蔵能の開拓 招待有り

    岡 弘樹

    日本mrs水素科学技術連携研究会 前期研究会 2023年7月19日

  38. クリーンエネルギー製造に向けた有機高分子の革新的触媒能の開拓 招待有り

    公益社団法人新化学技術推進協会(JACI) 第 12 回新化学技術研究奨励賞 授与式 2023年6月26日

  39. エネルギー問題に有機材料で挑む 招待有り

    岡 弘樹

    技術士化学部会5月度講演会 2023年5月27日

  40. 高度化する情報技術を支える革新的かつ環境適合な有機電池の開発 招待有り

    岡 弘樹

    第21回 船井情報科学振興財団 褒賞式 2023年5月20日

  41. 有機と電気の交差点から 招待有り

    岡 弘樹

    科研費 変革(B) 「活イオン液体の科学」キックオフミーティング 2023年4月15日

  42. バイオマスを活用した持続可能な CO2 フリー水素製造法の開発 招待有り

    岡 弘樹

    日本学術振興会 令和4 (2022)年度育志賞研究発表会 2023年3月13日

  43. ポリチオフェンによる可視光照射下でのカーボンフリーグリーン水素製造法の確立 招待有り

    岡 弘樹

    倉田奨励金研究発表会 2023年3月3日

  44. 持続可能な社会の実現に向けた機能性有機材料の展開 ~早稲田大学への感謝の気持ちとともに~ 招待有り

    岡 弘樹

    第42回早桜会懇話会 2023年2月18日

  45. 電荷貯蔵能を有する有機固体材料の展開

    岡 弘樹

    有機固体若手の会 2022冬の学校 2022年12月23日

  46. 育志賞受賞者講演 招待有り

    岡 弘樹

    育志賞講演会(大阪大学) 2022年11月30日

  47. エネルギー問題解決に向けた有機材料の開発 招待有り

    岡 弘樹

    早稲田大学高等学院 選択科目「現代の生命科学」 2022年11月15日

  48. 次世代の蓄電を担う超環境適合かつ持続可能なオール有機電池の開発 招待有り

    岡 弘樹

    大阪大学 連携VC連絡会 2022年9月29日

  49. エネルギー問題解決に向けた斬新な機能性有機材料の創製 招待有り

    岡 弘樹

    京都工芸繊維大学 純正・応用化学セミナー (2022年度第6回) 2022年9月14日

  50. 革新的な機能性有機材料に向けた取り組み 招待有り

    岡 弘樹

    京都大学 人間・環境学研究科 分子・生命環境論講座 分子環境相関論分野 分子環境相関論 清秋セミナー2022 2022年9月12日

  51. 最先端技術の特性から新事業開発を考える~微細藻類と水素を題材に~ 招待有り

    岡 弘樹

    超異分野学会 高知フォーラム 2022年8月4日

  52. 持続可能な機能性有機材料に向けた 取り組み 招待有り

    岡 弘樹

    日東紡績株式会社 162期第1回技術講演会 2022年7月29日

  53. 自己紹介と持続可能な機能性有機材料に向けた取り組み 招待有り

    岡 弘樹

    産業技術総合研究所 化学プロセス研究部門講演会(令和4年度第1回) 2022年7月26日

  54. 環境適合な有機電池の創製 招待有り

    岡 弘樹

    令和三年度 育志賞研究発表会 2022年3月2日

  55. クリーンエネルギー製造に向けた革新的触媒としての導電性高分子

    岡 弘樹

    「第16回わかしゃち奨励賞」優秀提案発表 2022年1月27日

  56. Organic Redox Molecules for Electrochemical Selective NH4+ Recovery

    Kouki Oka

    MRM2021 2021年12月13日

  57. フィルム技術でエネルギーを生み出し脱炭素社会を創造する 招待有り

    超異分野学会 香川フォーラム 2021年12月3日

  58. ポリチオフェンによる可視光駆動の水分解/水素製造

    第128回触媒討論会 2021年9月15日

  59. プロトン-電子のカップリングに基づくエネルギー貯蔵 招待有り

    第8回ハイドロジェノミクス若手スクール 2021年8月31日

  60. Organic Radicals for Thermo-electrochemical Cells

    The 1st Asian Conference on Molecular Magnetism 2021年3月

  61. 水素授受反応に立脚した高密度水素貯蔵を担うレドックス高分子の創出と機能開拓 招待有り

    令和2(2020)年度 育志賞研究発表会 2021年3月

  62. 有機プラスチック触媒によるオンサイト水素製造 招待有り

    第1回エコテックグランプリ 2020年10月

  63. 水素貯蔵を可能とする高分子

    第3回ハイドロジェノミクス研究会 2020年8月

  64. “コロナウイルスに打ち勝つ”究極のエコテック:有機プラスチックでの過酸化水素の製造 招待有り

    第9回超異分野学会 本大会 2020年4月

  65. Poly(dihydroxybenzoquinone): Its High-density and Robust Charge Storage Capability in Rechargeable Acidic Polymer-air Batteries

    1st INTERNATIONAL SYMPOSIUM “HYDROGENOMICS” combined with 14th INTERNATIONAL SYMPOSIUM HYDROGEN & ENERGY 2020年1月

  66. 理想的な水分解: 導電性高分子の新機能 招待有り

    未来・水素エネルギーフォーラム in 富谷 2019年12月

  67. 創蓄電デバイスの設計に向けた水素貯蔵高分子の高性能化~最新の展開~

    第2回ハイドロジェノミクス研究会 2019年12月

  68. Poly(2-methyl-5-vinylpyrazine) as a Hydrogen Storage Material

    The 6th Federation of Asian Polymer Societies Polymer Congress 2019年10月

  69. レドックスポリマーを負極とした有機空気二次電池

    第13回超分子若手懇談会 2019年10月

  70. 創蓄電デバイスの設計に向けた水素貯蔵高分子の高性能化 招待有り

    第4回ハイドロジェノミクス若手スクール 2019年8月

  71. FLUORENONE/FLUORENOL POLYMER NANOPARTICLES FOR REVERSIBLE HYDROGEN-FIXING AND -RELEASING WITH THE IRIDIUM COMPLEX

    18th IUPAC International Symposium on MacroMolecular Complexes 2019年6月

  72. ポリ(ビニルキノキサリン)の可逆な水素化・水素発生反応

    第68回高分子学会年次大会 2019年5月

  73. 水素をためる高分子

    第12回超分子若手懇談会 2018年10月

  74. Poly(vinylfluorenone) nanoparticles as a hydrogen carrier

    第67回高分子学会年次大会 2018年5月

  75. Poly(vinyldibenzothiophenesulfone): Redox at Negative Potential

    Waseda-Peking Joint Workshop on Green Innovation 2018 2018年3月

  76. ジベンゾチオフェンスルホン高分子の卑な電位での酸化還元と全有機二次電池

    帝人21世紀フォーラム 2018年2月

  77. Poly(vinyldibenzothiophenesulfone): Redox at Negative Potential and Application to an Organic-based Battery

    Virginia Tech-Waseda Joint Workshop on “Energy and Nanomaterials” 2017年9月

  78. ポリ(ビニルジベンゾチオフェンスルホン): 卑な電位での酸化還元と全有機二次電池

    第66回高分子討論会 2017年9月

  79. Poly(vinyldibenzothiophenesulfone): Redox at Negative Potential and Application to an Organic-based Battery

    7th Jilin-Korea-Waseda Alliance Annual Symposium 2017年8月

  80. Vapor Assisted Complexation: A New, Quasi Solid-state Method to High Purity Metal-complexes

    17th IUPAC International Symposium MacroMolecular Complexes 2017年8月

  81. Organic-based Battery

    The 3rd PKU-Waseda Joint Symposium 2017年3月

  82. ジフェニルスルホン置換ポリマーの合成と電気化学特性

    日本化学会第97回春季年会 2017年3月

  83. Electrolytic Hydrogenation of Fluorenone toward Hydrogen Carrier

    The 5th International Seminar on Green Energy Conversion 2016年9月

︎全件表示 ︎最初の5件までを表示

産業財産権 6

  1. 酸素及び水素の水分解による製造方法

    特許7072931

    産業財産権の種類: 特許権

  2. 過酸化水素の製造法

    産業財産権の種類: 特許権

  3. 有機半導体薄膜およびその製造方法

    産業財産権の種類: 特許権

  4. 電極用組成物、電極および電池

    産業財産権の種類: 特許権

  5. 二酸化炭素の吸収又は脱着剤

    産業財産権の種類: 特許権

  6. 水素の製造方法

    産業財産権の種類: 特許権

︎全件表示 ︎最初の5件までを表示

共同研究・競争的資金等の研究課題 17

  1. 負極電位-電位窓ギャップの解消による無劣化二次電池の創成

    山田 裕貴, 岡 弘樹

    2025年6月 ~ 2028年3月

  2. 機能性分子のカプセル化による斬新な分離・変換・検出技術の開発

    岡 弘樹

    提供機関:New Energy and Industrial Technology Development Organization

    2025年4月 ~ 2027年9月

  3. 特定PFASの無害化・資源循環に向けた検出・分解技術の開発

    岡 弘樹, 滝本大裕, 吉崎耕大

    提供機関:New Energy and Industrial Technology Development Organization

    2025年5月 ~ 2027年3月

  4. 時間分解分光法を用いたn型有機半導体の性能向上

    岡 弘樹

    2025年4月 ~ 2027年3月

  5. 持続可能なクリーンエネルギー製造に向けた革新的な有機固体触媒の創製

    岡 弘樹

    2024年4月 ~ 2027年3月

  6. 環境適合な有機ハイドライドの創出とグリーン水素の製造・貯蔵法の構築

    岡 弘樹

    2024年4月 ~ 2027年3月

  7. 高エネルギー密度を有する高温作動長寿命リチウム系電池の開発

    金村 聖志, 山田 裕貴, 岡 弘樹他

    2023年10月 ~ 2027年3月

    詳細を見る 詳細を閉じる

    リチウムイオン電池のより一層の普及には、高温地域での使用を可能とする耐高温特性を有するリチウムイオン電池が必要である。リチウムイオン電池製造時のGHG削減と資源節約のためには、電池寿命を改善することが必須である。また、ドローンなどのエアモビリティーにおいては大きなエネルギー密度が求められ、金属系負極を用いるリチウム系電池の開発が必要である。これらの目標達成には、電池の高温時の挙動、劣化機構、エネルギー密度向上のための電池設計理論が重要である。そして、新規リチウム系電池を具現化するための材料技術が重要である。本チームでは、社会実装可能な電池の姿を見据えながら、材料科学・計算科学・界面科学・放射光計測を連携して。短期間・中期間・長期間に分けて3つの電池の性能を向上させていく。最終的には究極的なリチウム系電池の姿を明らかにする。

  8. 次世代の蓄電を担う超環境適合かつ持続可能なオール有機電池の開発

    岡 弘樹

    2023年10月 ~ 2026年9月

  9. 次世代の蓄電を担う超環境適合かつ持続可能なオール有機電池の開発

    岡 弘樹

    2023年10月 ~ 2026年9月

  10. 高極性溶剤を用いたセルロース抽出技術および放射性セシウム除去技術開発の研究

    藤田 正博, 岡 弘樹

    2025年2月 ~ 2026年3月

  11. 新奇活イオン液体の設計・合成と「応用電気化学」への展開

    山田 裕貴, 岡 弘樹

    2023年4月 ~ 2026年3月

  12. 高い熱電能を有する有機レドックス分子の創製と熱化学電池

    岡 弘樹

    2021年4月 ~ 2026年3月

    詳細を見る 詳細を閉じる

    代表的な有機レドックス分子である有機ラジカル分子、キノン類、ビオロゲンの電気化学特性の温度依存性を確認した。熱化学電池セルによる電気化学測定法を修得し、有機レドックス分子での熱電特性(ゼーベック係数)の測定を通じて、高い熱電能を与える有機レドックス分子の創出に向けた分子要件の良好な予備知見を得て、研究開始後すぐ(準備期間)に、国際学会発表を行った。また、キノン類を対象に置換基を導入した誘導体、主鎖骨格の異なる高分子を合成し、それらが熱電能に与える影響の解明を通じて、得られた知見をもとに、高い熱電能を有する有機レドックス分子の創製に向けた今後の分子設計の指針を確立することができた。 海外受入研究機関のプロジェクトに参加し、斬新な有機材料・デバイスの創製に関する技法・知見を修得した。すでに、海外受入研究者との議論により、環境適合な全有機二次電池のプロジェクトに参加している。高い酸化還元能を有する有機レドックス分子を構造内に組み込んだ有機構造体(covalent organic frameworks)を新規に合成し、同構造体を負極として用いたエネルギー密度・耐久性・環境適合性高い空気二次電池の創製に繋げている。 以上のような当初の計画以上の展開について、研究内容の効果的なアピールにも尽力している。連名含む国内学会2件、国際会議2件にて研究発表し、対外的に高い評価を受けている。これらの成果は学術論文として報告予定である。

  13. ヘテロ元素との協奏が導く高分子光触媒の開拓

    井本 裕顕、岡 弘樹

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research

    研究種目:Grant-in-Aid for Challenging Research (Exploratory)

    研究機関:Kyoto Institute of Technology

    2023年6月 ~ 2025年3月

  14. 次世代の蓄電を担う超環境適合かつ持続可能なオール有機電池の開発

    岡 弘樹

    2022年10月 ~ 2024年9月

  15. 持続可能な電荷貯蔵に向けた有機・高分子レドックス材料の結合と分解の化学

    岡 弘樹

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research Grant-in-Aid for Early-Career Scientists

    研究種目:Grant-in-Aid for Early-Career Scientists

    研究機関:Osaka University

    2022年4月 ~ 2024年3月

  16. 熱応答性分子電気化学の創成

    山田 鉄兵, 周 泓遥, 金井塚 勝彦, 岡 弘樹

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research

    研究種目:Grant-in-Aid for Scientific Research (B)

    研究機関:The University of Tokyo

    2020年4月1日 ~ 2023年3月31日

    詳細を見る 詳細を閉じる

    2021年度は次の4つの研究について進展があった。 第一にプロトン共役電子移動反応の温度依存性について、大きな進展があった。ルテニウムトリスビイミダゾール錯体のPCET反応を利用した熱化学電池は、酸化還元活物質の溶解度に課題があった。そこで、レドックスフロー電池に用いられるバナジウムアクア錯体を用いた熱化学電池を作成したところ、高い溶解度と高いゼーベック係数を両立し、ベンチマークとして広く用いられているフェロシアン・フェリシアンの系を凌駕する性能指数を示した。バナジウムアクア錯体については特許出願に至っている。またLCST転移によってpHを調整することの出来るpNIPAMナノゲルを用いた熱化学電池は、高いゼーベック係数を示すことを実証し、論文投稿に至った。 第二に中温域と呼ばれる100~200℃程度の領域における熱化学電池の研究に進展があった。エチレングリコールと塩化コリンからなる深共晶液体(DES)が、中温域にて安定で、フェロシアン・フェリシアンの溶液が比較的高いゼーベック係数を示すことが明らかになった。この系は、イオン液体と比較して、活物質の濃度が低い領域で良好な結果となった。本課題は2022年度の実施予定であったが、既に論文投稿に至っている。 第三に、熱化学電池の逆反応である電気化学ペルチェ素子の実証に成功した。 第四に、TRECシステムに取り組んだ。二次電池の充放電電圧の温度依存性を利用して熱電変換を行うTRECシステムは高い熱電変換効率を示すことが知られている一方、その熱起電力の起源については不明な点が多い。2021年度はリチウムイオン電池型のTRECシステムを作成し、正極の電位の温度依存性の研究の評価系を立ち上げた。

  17. 水素授受反応に立脚した高密度水素貯蔵を担うレドックス高分子の創出と機能開拓

    岡 弘樹

    2019年4月25日 ~ 2022年3月31日

    詳細を見る 詳細を閉じる

    1. 高い質量水素密度を有する有機レドックス高分子の創出 コンパクト分子構造で密度高いポリビニルフルオレノールを設計・合成した。その電荷および水素(プロトン)の交換反応と水素発生(110 mL/g, 1.0 wt%)を明らかにした(Macromol. Rapid. Commun. 2019)。水素付加・脱離体をフルオレノールからキノキサリンなどの窒素複素環式化合物に拡張し、質量水素密度として有機ハイドライドと同程度の数wt%のゲル状の水素キャリアとして試験した。 2. 有機レドックス高分子での高速な水素交換反応の解明とデバイスへの展開 有機レドックス高分子による高速でのプロトン・電子の交換反応を電気化学測定により明らかにした。レドックス高分子がプロトン交換反応に基づき、酸性水電解液中高い出力を有する負極材料として働くことを見出した。同高分子を負極として使用し、高い出力・耐久性をもつ有機空気二次電池をはじめて実証した(Chem. Commun. 2020、同雑誌裏表紙に選出)。 スウェーデン・ウプサラ大と一部共同してレドックス高分子でのハイドロキノン/キノン間のプロトン移動に注目し、電荷輸送能と共役した過程として特徴づけ、その基礎的な電気化学特性を明らかにした。さらに、同高分子を正極、水溶液電解質を使用した高い起電力を有する有機リチウム電池の創製、実証につなげた(Electrochem. Commun. 2019)。今後も引き続きウプサラ大と共同を続け、レドックス高分子の電荷・水素の輸送能を明らかにしていく。

︎全件表示 ︎最初の5件までを表示

担当経験のある科目(授業) 17

  1. 有機化学演習A 東北大学

  2. 課題研究I 東北大学

  3. 化学一般実験B 東北大学

  4. 基礎科学序論 東北大学

  5. 生物有機化学特別研修 東北大学

  6. 生物有機化学特論 東北大学

  7. 応用生命化学特論 東北大学

  8. 生物有機セミナー 東北大学

  9. 有機バイオ材料化学 東北大学

  10. 学問への扉 [学部1年生対象の一般教養授業] 大阪大学 全学教育推進機構

  11. 現代の生命科学(早稲田高等学院 高大一貫教育事業)

  12. 有機化学実験 大阪大学 大学院工学研究科

  13. 物理化学演習2(電気化学分野) 大阪大学 大学院工学研究科

  14. 基礎化学実験(有機化学分野) 大阪大学 大学院工学研究科

  15. ゼミナールA・B 大阪大学 大学院工学研究科

  16. 高校化学 東京都内私立高校

  17. 高校数学 東京都内私立高校

︎全件表示 ︎最初の5件までを表示

社会貢献活動 4

  1. Japan Taiwan Bilateral Workshop on Nano-Science 2022の企画・運営

    Japan Taiwan Bilateral Workshop on Nano-Science 2022

    2022年11月27日 ~ 2022年11月30日

  2. キャリアディスカバリーセミナー①

    2021年9月30日 ~ 2021年9月30日

  3. 育志賞講演会

    2022年11月30日 ~

  4. オンラインセミナー『ECO-TECH始動!〜環境問題解決と持続可能な社会を実現するテクノロジー』

    2021年4月2日 ~

メディア報道 11

  1. 2023年度大阪ニュークリアサイエンス協会賞受賞者のことば 執筆者本人

    一般社団法人大阪ニュークリアサイエンス協会 onsanews34-1

    2024年7月

    メディア報道種別: 会誌・広報誌

  2. 研究者インタビュー

    株式会社CoA Nexus CoA Researcher https://coanexus.com/coaresearcher/interview/kouki-oka/

    2024年3月

    メディア報道種別: インターネットメディア

  3. 市村清新技術財団、地球環境研究の助成先4件決定 執筆者本人

    日刊工業新聞社 日刊工業新聞

    2024年2月

    メディア報道種別: 新聞・雑誌

  4. 岡弘樹助教が若手研究者向け表彰を連続受賞

    大阪大学大学院工学研究科 https://www.eng.osaka-u.ac.jp/ja/topics/researchresult/16870/

    2023年7月

    メディア報道種別: インターネットメディア

  5. webページに紹介記事掲載

    https://r.lne.st/adopter/27588/

    2022年12月

    メディア報道種別: インターネットメディア

  6. 雑誌表紙掲載 執筆者本人

    株式会社リバネス 研究応援 vol.26 https://lne.st/business/publishing/kenkyu/

    2022年6月

    メディア報道種別: 新聞・雑誌

  7. 高分子のミライに向けて 執筆者本人

    公益財団法人 高分子学会 高分子 71巻5月号

    2022年5月

    メディア報道種別: 新聞・雑誌

  8. 高分子でゼロエミッション社会の実現に挑む

    早稲田大学 https://www.waseda.jp/inst/research/news/71218

    2021年4月

  9. 岡 弘樹(一貫制博士課程4年)が第11回 日本学術振興会 育志賞を受賞

    早稲田大学 https://www.ase.sci.waseda.ac.jp/update/closeup/2746

    2021年3月

    メディア報道種別: その他

  10. 有機プラスチックの新機能開拓(個人紹介記事)

    化学工業日報

    2020年12月11日

    メディア報道種別: 新聞・雑誌

  11. 研究とは知的好奇心

    株式会社リバネス 研究応援 https://r.lne.st/

    2020年12月

    メディア報道種別: 会誌・広報誌

︎全件表示 ︎最初の5件までを表示

学術貢献活動 12

  1. 独立行政法人環境再生保全機構 アドバイザー

    2023年4月1日 ~ 継続中

    学術貢献活動種別: 審査・学術的助言

  2. 大阪大学 外部アドバイザー

    2024年4月1日 ~ 継続中

  3. 日本化学会第103春季年会 セッション座長

    2023年3月22日 ~ 2023年3月25日

    学術貢献活動種別: 学会・研究会等

  4. 第30回有機結晶シンポジウム

    2022年11月3日 ~ 2022年11月5日

    学術貢献活動種別: 大会・シンポジウム等

  5. 首都圏オープン生徒研究発表会(TSEF)2022 発表審査員

    2023年3月12日 ~

  6. 第68回高分子研究発表会(神戸) セッション座長

    2022年7月 ~

  7. 日本化学会第102春季年会 セッション座長および発表審査員

    2022年3月 ~

    学術貢献活動種別: 学会・研究会等

  8. 首都圏オープン生徒研究発表会(TSEF)2021 発表審査員

    2022年3月 ~

  9. サイエンスキャッスル関西大会 ポスター審査員

    2021年12月 ~

    学術貢献活動種別: 大会・シンポジウム等

  10. 首都圏オープン生徒研究発表会(TSEF)2020 発表審査員

    2021年3月14日 ~

  11. サイエンスキャッスル関東大会 ポスター審査員

    2020年12月20日 ~

    学術貢献活動種別: 大会・シンポジウム等

  12. 第13回超分子若手懇談会 座長

    2019年11月14日 ~

    学術貢献活動種別: 大会・シンポジウム等

︎全件表示 ︎最初の5件までを表示