研究者詳細

顔写真

タニ ハルナ
谷 春菜
Haruna Tani
所属
加齢医学研究所 附属環境ストレス老化研究センター 核酸修飾・損傷応答研究分野
職名
助教
学位
  • 博士(理学)(筑波大学)

  • 修士(理学)(筑波大学)

e-Rad 研究者番号
70930303

経歴 3

  • 2024年4月 ~ 継続中
    東北大学 加齢医学研究所 助教

  • 2021年4月 ~ 2024年3月
    東北大学 加齢医学研究所 / 日本学術振興会 特別研究員(PD)

  • 2018年4月 ~ 2021年3月
    筑波大学 生命環境科学研究科 / 日本学術振興会 特別研究員(DC1)

学歴 3

  • 筑波大学大学院 生命環境科学研究科 生物科学専攻(博士後期課程)

    2018年4月 ~ 2021年3月

  • 筑波大学大学院 生命環境科学研究科 生物科学専攻(博士前期課程)

    2016年4月 ~ 2018年3月

  • 筑波大学 生命環境学群 生物学類

    2012年4月 ~ 2016年3月

所属学協会 5

  • 日本RNA学会

  • 日本ミトコンドリア学会

  • 日本実験動物学会

  • 日本生化学会

  • 日本分子生物学会

受賞 9

  1. 若手優秀発表賞 最優秀賞

    2023年3月 第21回日本ミトコンドリア学会

  2. 若手優秀発表賞 第95回日本生化学会大会

    2022年11月

  3. 第41回 加齢医学研究所集談会コンテスト 第1位

    2022年7月

  4. 研究科長表彰

    2021年3月 筑波大学大学院 生命環境科学研究科 (博士後期課程)

  5. 専攻長表彰

    2021年3月 筑波大学大学院 生命環境科学研究科 生物科学専攻

  6. 最優秀発表賞

    2021年2月 日本ミトコンドリア学会 特別オンラインシンポジウム

  7. Most outstanding performance award

    2019年10月 The 16th Conference of Asian Society for Mitochondrial Research and Medicine

  8. 若手優秀発表賞

    2019年5月 第66回日本実験動物学会総会

  9. 研究科長表彰

    2018年3月 筑波大学大学院 生命環境科学研究科 (博士前期課程)

︎全件表示 ︎最初の5件までを表示

論文 8

  1. Accumulation of mitochondrial DNA with a point mutation in tRNALeu(UUR) gene induces brain dysfunction in mice. 国際誌

    Kaori Ishikawa, Daiki Miyata, Satoko Hattori, Haruna Tani, Takayoshi Kuriyama, Fan-Yan Wei, Tsuyoshi Miyakawa, Kazuto Nakada

    Pharmacological research 208 107374-107374 2024年8月27日

    DOI: 10.1016/j.phrs.2024.107374  

    詳細を見る 詳細を閉じる

    Brain functions are mediated via the complex interplay between several complex factors, and hence, identifying the underlying cause of an abnormality within a certain brain region can be challenging. In mitochondrial disease, abnormalities in brain function are thought to be attributed to accumulation of mitochondrial DNA (mtDNA) with pathogenic mutations; however, only few previous studies have directly demonstrated that accumulation of mutant mtDNA induced abnormalities in brain function. Herein, we examined the effects of mtDNA mutations on brain function via behavioral analyses using a mouse model with an A2748G point mutation in mtDNA tRNALeu(UUR). Our results revealed that mice with a high percentage of mutant mtDNA showed a characteristic trend toward reduced prepulse inhibition and memory-dependent test performance, similar to that observed in psychiatric disorders, such as schizophrenia; however, muscle strength and motor coordination were not markedly affected. Upon examining the hippocampus and frontal lobes of the brain, mitochondrial morphology was abnormal, and the brain weight was slightly reduced. These results indicate that the predominant accumulation of a point mutation in the tRNALeu(UUR) gene may affect brain functions, particularly the coordination of sensory and motor functions and memory processes. These abnormalities probably caused by both direct effects of accumulation of the mutant mtDNA in neuronal cells and indirect effects via changes of systemic extracellular environments. Overall, these findings will lead to a better understanding of the pathogenic mechanism underlying this complex disease and facilitate the development of optimal treatment methods.

  2. Pathological mutations promote proteolysis of mitochondrial tRNA-specific 2-thiouridylase 1 (MTU1) via mitochondrial caseinolytic peptidase (CLPP). 国際誌

    Raja Norazireen Raja Ahmad, Long-Teng Zhang, Rikuri Morita, Haruna Tani, Yong Wu, Takeshi Chujo, Akiko Ogawa, Ryuhei Harada, Yasuteru Shigeta, Kazuhito Tomizawa, Fan-Yan Wei

    Nucleic acids research 52 (3) 1341-1358 2024年2月9日

    DOI: 10.1093/nar/gkad1197  

    詳細を見る 詳細を閉じる

    MTU1 controls intramitochondrial protein synthesis by catalyzing the 2-thiouridine modification of mitochondrial transfer RNAs (mt-tRNAs). Missense mutations in the MTU1 gene are associated with life-threatening reversible infantile hepatic failure. However, the molecular pathogenesis is not well understood. Here, we investigated 17 mutations associated with this disease, and our results showed that most disease-related mutations are partial loss-of-function mutations, with three mutations being particularly severe. Mutant MTU1 is rapidly degraded by mitochondrial caseinolytic peptidase (CLPP) through a direct interaction with its chaperone protein CLPX. Notably, knockdown of CLPP significantly increased mutant MTU1 protein expression and mt-tRNA 2-thiolation, suggesting that accelerated proteolysis of mutant MTU1 plays a role in disease pathogenesis. In addition, molecular dynamics simulations demonstrated that disease-associated mutations may lead to abnormal intermolecular interactions, thereby impairing MTU1 enzyme activity. Finally, clinical data analysis underscores a significant correlation between patient prognosis and residual 2-thiolation levels, which is partially consistent with the AlphaMissense predictions. These findings provide a comprehensive understanding of MTU1-related diseases, offering prospects for modification-based diagnostics and novel therapeutic strategies centered on targeting CLPP.

  3. Aberrant RNA processing contributes to the pathogenesis of mitochondrial diseases in trans-mitochondrial mouse model carrying mitochondrial tRNALeu(UUR) with a pathogenic A2748G mutation. 国際誌 査読有り

    Haruna Tani, Kaori Ishikawa, Hiroaki Tamashiro, Emi Ogasawara, Takehiro Yasukawa, Shigeru Matsuda, Akinori Shimizu, Dongchon Kang, Jun-Ichi Hayashi, Fan-Yan Wei, Kazuto Nakada

    Nucleic acids research 50 (16) 9382-9396 2022年8月24日

    DOI: 10.1093/nar/gkac699  

    詳細を見る 詳細を閉じる

    Mitochondrial tRNAs are indispensable for the intra-mitochondrial translation of genes related to respiratory subunits, and mutations in mitochondrial tRNA genes have been identified in various disease patients. However, the molecular mechanism underlying pathogenesis remains unclear due to the lack of animal models. Here, we established a mouse model, designated 'mito-mice tRNALeu(UUR)2748', that carries a pathogenic A2748G mutation in the tRNALeu(UUR) gene of mitochondrial DNA (mtDNA). The A2748G mutation is orthologous to the human A3302G mutation found in patients with mitochondrial diseases and diabetes. A2748G mtDNA was maternally inherited, equally distributed among tissues in individual mice, and its abundance did not change with age. At the molecular level, A2748G mutation is associated with aberrant processing of precursor mRNA containing tRNALeu(UUR) and mt-ND1, leading to a marked decrease in the steady-levels of ND1 protein and Complex I activity in tissues. Mito-mice tRNALeu(UUR)2748 with ≥50% A2748G mtDNA exhibited age-dependent metabolic defects including hyperglycemia, insulin insensitivity, and hepatic steatosis, resembling symptoms of patients carrying the A3302G mutation. This work demonstrates a valuable mouse model with an inheritable pathological A2748G mutation in mt-tRNALeu(UUR) that shows metabolic syndrome-like phenotypes at high heteroplasmy level. Furthermore, our findings provide molecular basis for understanding A3302G mutation-mediated mitochondrial disorders.

  4. Disruption of the mouse Shmt2 gene confers embryonic anaemia via foetal liver-specific metabolomic disorders. 国際誌 査読有り

    Haruna Tani, Takayuki Mito, Vidya Velagapudi, Kaori Ishikawa, Moe Umehara, Kazuto Nakada, Anu Suomalainen, Jun-Ichi Hayashi

    Scientific reports 9 (1) 16054-16054 2019年11月5日

    DOI: 10.1038/s41598-019-52372-6  

    詳細を見る 詳細を閉じる

    In a previous study, we proposed that age-related mitochondrial respiration defects observed in elderly subjects are partially due to age-associated downregulation of nuclear-encoded genes, including serine hydroxymethyltransferase 2 (SHMT2), which is involved in mitochondrial one-carbon (1C) metabolism. This assertion is supported by evidence that the disruption of mouse Shmt2 induces mitochondrial respiration defects in mouse embryonic fibroblasts generated from Shmt2-knockout E13.5 embryos experiencing anaemia and lethality. Here, we elucidated the potential mechanisms by which the disruption of this gene induces mitochondrial respiration defects and embryonic anaemia using Shmt2-knockout E13.5 embryos. The livers but not the brains of Shmt2-knockout E13.5 embryos presented mitochondrial respiration defects and growth retardation. Metabolomic profiling revealed that Shmt2 deficiency induced foetal liver-specific downregulation of 1C-metabolic pathways that create taurine and nucleotides required for mitochondrial respiratory function and cell division, respectively, resulting in the manifestation of mitochondrial respiration defects and growth retardation. Given that foetal livers function to produce erythroblasts in mouse embryos, growth retardation in foetal livers directly induced depletion of erythroblasts. By contrast, mitochondrial respiration defects in foetal livers also induced depletion of erythroblasts as a consequence of the inhibition of erythroblast differentiation, resulting in the manifestation of anaemia in Shmt2-knockout E13.5 embryos.

  5. Acquired Expression of Mutant Mitofusin 2 Causes Progressive Neurodegeneration and Abnormal Behavior. 国際誌 査読有り

    Kaori Ishikawa, Satoshi Yamamoto, Satoko Hattori, Naoya Nishimura, Haruna Tani, Takayuki Mito, Hirokazu Matsumoto, Tsuyoshi Miyakawa, Kazuto Nakada

    The Journal of neuroscience : the official journal of the Society for Neuroscience 39 (9) 1588-1604 2019年2月27日

    DOI: 10.1523/JNEUROSCI.2139-18.2018  

    詳細を見る 詳細を閉じる

    Neurons have high plasticity in developmental and juvenile stages that decreases in adulthood. Mitochondrial dynamics are highly important in neurons to maintain normal function. To compare dependency on mitochondrial dynamics in juvenile and adult stages, we generated a mouse model capable of selective timing of the expression of a mutant of the mitochondrial fusion factor Mitofusin 2 (MFN2). Mutant expression in the juvenile stage had lethal effects. Contrastingly, abnormalities did not manifest until 150 d after mutant expression during adulthood. After this silent 150 d period, progressive neurodegeneration, abnormal behaviors, and learning and memory deficits similar to those seen in human neurodegenerative diseases were observed. This indicates that abnormal neuronal mitochondrial dynamics seriously affect survival during early life stages and can also significantly damage brain function after maturation. Our findings highlight the need to consider the timing of disease onset in mimicking human neurodegenerative diseases.SIGNIFICANCE STATEMENT To compare the dependency on mitochondrial dynamics in neurons in juvenile and adult stages, we generated a mouse model expressing a mutant of the mitochondrial fusion factor MFN2 in an arbitrary timing. Juvenile expression of the mutant showed acute and severe phenotypes and had lethal effects; however, post-adult expression induced delayed but progressive phenotypes resembling those found in human neurodegenerative diseases. Our results indicate that abnormal neuronal mitochondrial dynamics seriously affect survival during early life stages and can also significantly damage brain function after maturation. This strongly suggests that the timing of expression should be considered when establishing an animal model that closely resembles human neurodegenerative diseases.

  6. Mito-mice∆ and mitochondrial DNA mutator mice as models of human osteoporosis caused not by aging but by hyperparathyroidism. 査読有り

    Takayuki Mito, Haruna Tani, Michiko Suzuki, Kaori Ishikawa, Kazuto Nakada, Jun-Ichi Hayashi

    Experimental animals 67 (4) 509-516 2018年11月1日

    DOI: 10.1538/expanim.18-0060  

    詳細を見る 詳細を閉じる

    Mitochondrial DNA (mtDNA) mutator mice showing accelerated accumulation of mtDNA with somatic mutations are potentially useful models of human aging, whereas mito-miceΔ showing accelerated accumulation of mtDNA with a deletion mutation (ΔmtDNA) are potentially useful models of mitochondrial diseases but not human aging, even though both models express an age-associated decrease in mitochondrial respiration. Because osteoporosis is the only premature aging phenotype observed in mtDNA mutator mice with the C57BL/6J nuclear genetic background, our previous study precisely examined its expression spectra and reported that both mtDNA mutator mice and mito-miceΔ, but not aged mice, developed decreased cortical bone thickness. Moreover, decreased cortical bone thickness is usually not seen in aged humans but is commonly seen in the patients with hyperparathyroidism caused by oversecretion of parathyroid hormone (PTH). In the present study, we showed higher concentrations of blood PTH in mtDNA mutator mice and mito-miceΔ than in aged mice. We also found that both models developed decreased mitochondrial respiration in the duodenum or renal tubules, which would lead to hypocalcemia, oversecretion of PTH, and ultimately osteoporosis. Thus, mtDNA mutator mice and mito-miceΔ may be useful models of human osteoporosis caused not by aging but by hyperparathyroidism.

  7. Mice deficient in the Shmt2 gene have mitochondrial respiration defects and are embryonic lethal. 国際誌 査読有り

    Haruna Tani, Sakiko Ohnishi, Hiroshi Shitara, Takayuki Mito, Midori Yamaguchi, Hiromichi Yonekawa, Osamu Hashizume, Kaori Ishikawa, Kazuto Nakada, Jun-Ichi Hayashi

    Scientific reports 8 (1) 425-425 2018年1月11日

    DOI: 10.1038/s41598-017-18828-3  

    詳細を見る 詳細を閉じる

    Accumulation of somatic mutations in mitochondrial DNA (mtDNA) has been proposed to be responsible for human aging and age-associated mitochondrial respiration defects. However, our previous findings suggested an alternative hypothesis of human aging-that epigenetic changes but not mutations regulate age-associated mitochondrial respiration defects, and that epigenetic downregulation of nuclear-coded genes responsible for mitochondrial translation [e.g., glycine C-acetyltransferase (GCAT), serine hydroxymethyltransferase 2 (SHMT2)] is related to age-associated respiration defects. To examine our hypothesis, here we generated mice deficient in Gcat or Shmt2 and investigated whether they have respiration defects and premature aging phenotypes. Gcat-deficient mice showed no macroscopic abnormalities including premature aging phenotypes for up to 9 months after birth. In contrast, Shmt2-deficient mice showed embryonic lethality after 13.5 days post coitum (dpc), and fibroblasts obtained from 12.5-dpc Shmt2-deficient embryos had respiration defects and retardation of cell growth. Because Shmt2 substantially controls production of N-formylmethionine-tRNA (fMet-tRNA) in mitochondria, its suppression would reduce mitochondrial translation, resulting in expression of the respiration defects in fibroblasts from Shmt2-deficient embryos. These findings support our hypothesis that age-associated respiration defects in fibroblasts of elderly humans are caused not by mtDNA mutations but by epigenetic regulation of nuclear genes including SHMT2.

  8. Cytoplasmic transfer of heritable elements other than mtDNA from SAMP1 mice into mouse tumor cells suppresses their ability to form tumors in C57BL6 mice. 国際誌 査読有り

    Akinori Shimizu, Haruna Tani, Gaku Takibuchi, Kaori Ishikawa, Ryota Sakurazawa, Takafumi Inoue, Tetsuo Hashimoto, Kazuto Nakada, Keizo Takenaga, Jun-Ichi Hayashi

    Biochemical and biophysical research communications 493 (1) 252-257 2017年11月4日

    DOI: 10.1016/j.bbrc.2017.09.035  

    詳細を見る 詳細を閉じる

    In a previous study, we generated transmitochondrial P29mtSAMP1 cybrids, which had nuclear DNA from the C57BL6 (referred to as B6) mouse strain-derived P29 tumor cells and mitochondrial DNA (mtDNA) exogenously-transferred from the allogeneic strain SAMP1. Because P29mtSAMP1 cybrids did not form tumors in syngeneic B6 mice, we proposed that allogeneic SAMP1 mtDNA suppressed tumor formation of P29mtSAMP1 cybrids. To test this hypothesis, current study generated P29mt(sp)B6 cybrids carrying all genomes (nuclear DNA and mtDNA) from syngeneic B6 mice by eliminating SAMP1 mtDNA from P29mtSAMP1 cybrids and reintroducing B6 mtDNA. However, the P29mt(sp)B6 cybrids did not form tumors in B6 mice, even though they had no SAMP1 mtDNA, suggesting that SAMP1 mtDNA is not involved in tumor suppression. Then, we examined another possibility of whether SAMP1 mtDNA fragments potentially integrated into the nuclear DNA of P29mtSAMP1 cybrids are responsible for tumor suppression. We generated P29H(sp)B6 cybrids by eliminating nuclear DNA from P29mt(sp)B6 cybrids and reintroducing nuclear DNA with no integrated SAMP1 mtDNA fragment from mtDNA-less P29 cells resistant to hygromycin in selection medium containing hygromycin. However, the P29H(sp)B6 cybrids did not form tumors in B6 mice, even though they carried neither SAMP1 mtDNA nor nuclear DNA with integrated SAMP1 mtDNA fragments. Moreover, overproduction of reactive oxygen species (ROS) and bacterial infection were not involved in tumor suppression. These observations suggest that tumor suppression was caused not by mtDNA with polymorphic mutations or infection of cytozoic bacteria but by hypothetical heritable cytoplasmic elements other than mtDNA from SAMP1 mice.

︎全件表示 ︎最初の5件までを表示

書籍等出版物 3

  1. 脳神経内科 第102巻 第4号

    谷 春菜, 魏 范研

    科学評論社 2025年4月

  2. ミトコンドリア 疾患治療の新時代 : オルガネラ動態を紐解き異常ミトコンドリアの標的分子を狙う!

    谷 春菜, 中田 和人

    羊土社 2023年3月

    ISBN: 9784758104098

  3. ミトコンドリアダイナミクス : 機能研究から疾患・老化まで

    谷 春菜, 中田 和人

    エヌ・ティー・エス 2021年10月

    ISBN: 9784860437466

講演・口頭発表等 19

  1. ミトコンドリア創薬のためのゲノム編集技術 招待有り

    谷 春菜

    東北大学ResearchShowcase vol.7 ミトコンドリア機能を特異的に制御する研究技術 2025年5月

  2. Generation of Mitochondrial Disease Mouse Models Using mtDNA Base Editing Technology 招待有り

    谷 春菜, 平井 義祈, 中里 一星, 石川 香, 有村 慎一, 中田 和人, 魏 范研

    第47回 日本分子生物学会年会 2024年11月

  3. Exploring the pathways of sulfur modification in mitochondrial tRNAs 招待有り

    谷 春菜, Raja Norazireen, Raja Ahmad, 張 龍騰, 梅澤 啓太郎, 西村 明幸, 西田 基宏, 足達 俊吾, 荒磯 裕平, 魏 范研

    第97回 日本生化学会大会 2024年11月

  4. ミトコンドリアtRNA硫黄修飾の分子基盤の解明 招待有り

    谷 春菜, Raja Norazireen Raja Ahmad, 張 龍騰, 梅澤 啓太郎, 西村 明幸, 西田 基宏, 足達 俊吾, 魏 范研

    第46回 日本分子生物学会年会 2023年12月

  5. ミトコンドリアtRNA研究~分子から生体まで~ 招待有り

    谷 春菜

    OsakaMito2023 ミトコンドリアサイエンス 秋季ワークショップ 2023年10月

  6. 病原性変異型mtDNAを有する新規モデルマウスの樹立および病態解析 招待有り

    谷 春菜

    第44回 日本分子生物学会年会 2021年12月

  7. Generation of novel trans-mitochondrial mice carrying mtDNA with a point mutation in tRNALeu(UUR) gene 招待有り

    Haruna Tani

    Mitochondrial Medicine -Therapeutic Development 2021年12月

  8. Molecular Mechanism of Mtu1-Catalyzed Sulfur Modification in Mitochondrial tRNAs

    Haruna Tani, Raja Norazireen Raja Ahmad, Longteng Zhang, Keitaro Umezawa, Akiyuki Nishimura, Motohiro Nishida, Shungo Adachi, Yuhei Araiso, Fan-Yan Wei

    Redox Week in Sendai 2025 2025年4月

  9. 哺乳類ミトコンドリアゲノム編集による 疾患モデルの樹立へ向けて

    谷 春菜, 平井 義祈, 中里 一星, 石川 香, 有村 慎一, 中田 和人, 魏 范研

    第23回 日本ミトコンドリア学会年会 2024年11月

  10. tRNALeu(UUR)遺伝子に病原性変異を有する新規ミトコンドリア関連疾患モデルマウスの樹立および分子病理学的解析

    谷 春菜, 石川 香, 魏 范研, 中田 和人

    第21回日本ミトコンドリア学会 2023年3月

  11. ミトコンドリアtRNALeu(UUR)遺伝子に病原性変異を有する新規ミトコンドリア関連疾患モデルマウスの樹立および分子病理学的解析

    谷 春菜, 石川 香, 魏 范研, 中田 和人

    第95回 日本生化学会大会 2022年11月

  12. Exploring the molecular basis of mitochondrial tRNA sulfur modification

    Haruna Tani, Raja Norazireen, Raja Ahmad, Longteng Zhang, Akiyuki Nishimura, Motohiro Nishida, Fan-Yan Wei

    The 12th International NO Conference & The 22nd NOSJ 2022年10月

  13. 病原性変異型mtDNAを有するミトコンドリア関連疾患モデルマウスの樹立および病態解析

    谷 春菜, 石川 香, 林 純一, 中田 和人

    第93回 日本生化学会大会 2020年9月

  14. 病原性変異型mtDNAを有するミトコンドリア関連疾患モデルマウスの樹立および病態解析

    谷 春菜, 石川 香, 林 純一, 中田 和人

    第67回 日本実験動物学会総会 2020年5月

  15. ミトコンドリアDNAに病原性突然変異を有する新規ミトコンドリア病モデルマウスの樹立および病態解析

    谷 春菜, 石川 香, 林 純一, 中田 和人

    第42回 日本分子生物学会年会 2019年12月

  16. Generation and analysis of trans-mitochondrial mice carrying mtDNA with a point mutation in tRNALeu(UUR) gene

    Haruna Tani, Kaori Ishikawa, Jun-Ichi Hayashi, Kazuto Nakada

    The 16th Conference of Asian Society for Mitochondrial Research and Medicine 2019年10月

  17. ミトコンドリアDNA に病原性突然変異を有する新規ミトコンドリア病モデルマウスの樹立へ向けて

    谷 春菜, 石川 香, 林 純一, 中田 和人

    第66回 日本実験動物学会総会 2019年5月

  18. ミトコンドリアtRNA に点突然変異を有する新規ミトコンドリア病モデルマウスの樹立へ向けて

    谷 春菜, 石川 香, 林 純一, 中田 和人

    第18回 日本ミトコンドリア学会年会 2018年12月

  19. Generation of mice carrying pathogenic mitochondrial DNA with a point mutation in tRNALeu(UUR) gene

    Haruna Tani, Kaori Ishikawa, Akinori Shimizu, Takayuki Mito, Jun-Ichi Hayashi, Kazuto Nakada

    The 1st International Mitochondria Meeting for Young Scientists 2018年4月

︎全件表示 ︎最初の5件までを表示

共同研究・競争的資金等の研究課題 7

  1. 革新的mtDNA操作による病態発症機序の統合的理解

    谷 春菜

    2024年10月 ~ 2028年3月

  2. ミトコンドリア疾患モデルの樹立による病態形成機構の解明

    谷 春菜

    2023年9月 ~ 2028年3月

  3. ミトコンドリアゲノム編集技術が拓く疾患治療の新展開

    谷 春菜

    2025年4月 ~ 2027年3月

  4. 新規mtDNA塩基編集ツールを用いたミトコンドリア病モデルマウスの樹立

    谷 春菜

    2023年4月 ~ 2026年3月

  5. 革新的タンパク質翻訳解析ツールによる新規ミトコンドリア病創薬への挑戦

    魏 范研, 谷 春菜

    2023年6月 ~ 2025年3月

  6. 個体を用いたタンパク質翻訳の定性・定量解析によるミトコンドリア病発症機序の解明

    谷 春菜

    2021年4月 ~ 2024年3月

    詳細を見る 詳細を閉じる

    ミトコンドリアにおけるタンパク翻訳破綻はエネルギー代謝障害を介し、全身性の代謝疾患であるミトコンドリア病の発症原因となることが知られている。しかし、これまでミトコンドリア内の翻訳能を直接的に定量する手段は存在せず、ミトコンドリア翻訳を標的とする治療法や治療薬は開発されていない。 本研究は、ミトコンドリアタンパク質翻訳を可視化する新規ツールの開発により、ミトコンドリアゲノムに生じる病原性変異によるタンパク質翻訳障害の分子機構およびミトコンドリア病をはじめとした様々な代謝疾患の発症原因を明らかにする事を目的としている。これまでに、非典型アミノ酸メチオニンアナログであるAzidnorleucine (Anl) を取り込むことができる変異型Methionyl-tRNA synthetase (MARS)に着目し、変異型MARSをミトコンドリアに局在させることでミトコンドリアタンパク質翻訳をモニタリングする方法を着想し、培養細胞を用いて仮説検証をおこなっている。

  7. mtDNAに病原性突然変異を有する新規ミトコンドリア病モデルマウスの作出と解析

    谷 春菜

    2018年4月 ~ 2021年3月

    詳細を見る 詳細を閉じる

    ミトコンドリアは生体内におけるATP合成等を担う細胞小器官であり、独自のゲノムであるmtDNAを有している。病原性変異型mtDNAの蓄積は、ミトコンドリア呼吸機能不全を介し、ミトコンドリア病と総称される全身性の代謝疾患の原因となる事が知られている。ミトコンドリア病の臨床症状や症度、発症時期は変異型mtDNAの組織間分布や蓄積率、患者の遺伝的核背景、年齢、生活習慣など多様な要因により制御されていると考えられており、詳細な発症機構の解明および治療法の確立は困難を極める。この様な生体複雑系によって制御されるミトコンドリア病の多様な病型形成を理解する為には、病原性変異型mtDNAを含有するモデルマウス群の作出と活用が有効な研究戦略となる。本研究では、ヒトmtDNAにおいて病原性変異の発症頻度が高いtRNALeu(UUR)遺伝子領域に病原性点突然変異を導入したモデルマウスを作製し、病態解析を行う事を目的としている。 今年度は樹立されたモデルマウス群を用いた表現型解析を行った結果、変異型mtDNAの蓄積に伴い、血中乳酸値の上昇や組織におけるミトコンドリア機能低下などミトコンドリア病患者の臨床所見を再現する事が確認された。また、その様な表現型に加え、変異率の高いモデルマウス群では定常時血糖値の上昇および耐糖能異常、インスリン抵抗性が確認され、糖尿病の臨床所見が見られた。mtDNAに生じる突然変異は一部の糖尿病患者からも検出されており、今後、当該モデルマウスがミトコンドリア機能不全と糖尿病発症の関連性を理解する為に有用である可能性が示唆されている。

︎全件表示 ︎最初の5件までを表示

メディア報道 1

  1. ミトコンドリア病、マウスで再現 筑波大学など

    日本経済新聞

    2022年8月26日