研究者詳細

顔写真

マツダ シゲル
松田 盛
Shigeru Matsuda
所属
加齢医学研究所 加齢制御研究部門 モドミクス医学分野
職名
助教
学位
  • 博士(医学)(九州大学)

  • 修士(保健学)(琉球大学)

e-Rad 研究者番号
00884272

論文 8

  1. TEFM facilitates transition from RNA synthesis to DNA synthesis at H-strand replication origin of mtDNA

    Shigeru Matsuda, Masunari Nakayama, Yura Do, Takashi Ishiuchi, Mikako Yagi, Sjoerd Wanrooij, Kazuto Nakada, Fan-Yan Wei, Kenji Ichiyanagi, Hiroyuki Sasaki, Dongchon Kang, Takehiro Yasukawa

    Communications Biology 8 (1) 2025年2月8日

    出版者・発行元: Springer Science and Business Media LLC

    DOI: 10.1038/s42003-025-07645-4  

    eISSN:2399-3642

  2. Aberrant RNA processing contributes to the pathogenesis of mitochondrial diseases in trans-mitochondrial mouse model carrying mitochondrial tRNALeu(UUR) with a pathogenic A2748G mutation. 国際誌

    Haruna Tani, Kaori Ishikawa, Hiroaki Tamashiro, Emi Ogasawara, Takehiro Yasukawa, Shigeru Matsuda, Akinori Shimizu, Dongchon Kang, Jun-Ichi Hayashi, Fan-Yan Wei, Kazuto Nakada

    Nucleic acids research 50 (16) 9382-9396 2022年9月9日

    DOI: 10.1093/nar/gkac699  

    詳細を見る 詳細を閉じる

    Mitochondrial tRNAs are indispensable for the intra-mitochondrial translation of genes related to respiratory subunits, and mutations in mitochondrial tRNA genes have been identified in various disease patients. However, the molecular mechanism underlying pathogenesis remains unclear due to the lack of animal models. Here, we established a mouse model, designated 'mito-mice tRNALeu(UUR)2748', that carries a pathogenic A2748G mutation in the tRNALeu(UUR) gene of mitochondrial DNA (mtDNA). The A2748G mutation is orthologous to the human A3302G mutation found in patients with mitochondrial diseases and diabetes. A2748G mtDNA was maternally inherited, equally distributed among tissues in individual mice, and its abundance did not change with age. At the molecular level, A2748G mutation is associated with aberrant processing of precursor mRNA containing tRNALeu(UUR) and mt-ND1, leading to a marked decrease in the steady-levels of ND1 protein and Complex I activity in tissues. Mito-mice tRNALeu(UUR)2748 with ≥50% A2748G mtDNA exhibited age-dependent metabolic defects including hyperglycemia, insulin insensitivity, and hepatic steatosis, resembling symptoms of patients carrying the A3302G mutation. This work demonstrates a valuable mouse model with an inheritable pathological A2748G mutation in mt-tRNALeu(UUR) that shows metabolic syndrome-like phenotypes at high heteroplasmy level. Furthermore, our findings provide molecular basis for understanding A3302G mutation-mediated mitochondrial disorders.

  3. TFB2M and POLRMT are essential for mammalian mitochondrial DNA replication. 国際誌

    Teppei Inatomi, Shigeru Matsuda, Takashi Ishiuchi, Yura Do, Masunari Nakayama, Shusaku Abe, Kazutoshi Kasho, Sjoerd Wanrooij, Kazuto Nakada, Kenji Ichiyanagi, Hiroyuki Sasaki, Takehiro Yasukawa, Dongchon Kang

    Biochimica et biophysica acta. Molecular cell research 1869 (1) 119167-119167 2022年1月

    DOI: 10.1016/j.bbamcr.2021.119167  

    詳細を見る 詳細を閉じる

    Two classes of replication intermediates have been observed from mitochondrial DNA (mtDNA) in many mammalian tissue and cells with two-dimensional agarose gel electrophoresis. One is assigned to leading-strand synthesis in the absence of synchronous lagging-strand synthesis (strand-asynchronous replication), and the other has properties of coupled leading- and lagging-strand synthesis (strand-coupled replication). While strand-asynchronous replication is primed by long noncoding RNA synthesized from a defined transcription initiation site, little is known about the commencement of strand-coupled replication. To investigate it, we attempted to abolish strand-asynchronous replication in cultured human cybrid cells by knocking out the components of the transcription initiation complexes, mitochondrial transcription factor B2 (TFB2M/mtTFB2) and mitochondrial RNA polymerase (POLRMT/mtRNAP). Unexpectedly, removal of either protein resulted in complete mtDNA loss, demonstrating for the first time that TFB2M and POLRMT are indispensable for the maintenance of human mtDNA. Moreover, a lack of TFB2M could not be compensated for by mitochondrial transcription factor B1 (TFB1M/mtTFB1). These findings indicate that TFB2M and POLRMT are crucial for the priming of not only strand-asynchronous but also strand-coupled replication, providing deeper insights into the molecular basis of mtDNA replication initiation.

  4. Chemical acetylation of mitochondrial transcription factor A occurs on specific lysine residues and affects its ability to change global DNA topology. 国際誌

    Yuan Fang, Masaru Akimoto, Kouta Mayanagi, Atsushi Hatano, Masaki Matsumoto, Shigeru Matsuda, Takehiro Yasukawa, Dongchon Kang

    Mitochondrion 53 99-108 2020年7月

    DOI: 10.1016/j.mito.2020.05.003  

    詳細を見る 詳細を閉じる

    Chemical acetylation is postulated to occur in mitochondria. Mitochondrial transcription factor A (TFAM or mtTFA), a mitochondrial transcription initiation factor as well as the major mitochondrial nucleoid protein coating the entire mitochondrial genome, is proposed to be acetylated in animals and cultured cells. This study investigated the properties of human TFAM, in conjunction with the mechanism and effects of TFAM acetylation in vitro. Using highly purified recombinant human TFAM and 3 kb circular DNA as a downsized mtDNA model, we studied how the global TFAM-DNA interaction is affected/regulated by the quantitative TFAM-DNA relationship and TFAM acetylation. Results showed that the TFAM-DNA ratio strictly affects the TFAM property to unwind circular DNA in the presence of topoisomerase I. Mass spectrometry analysis showed that in vitro chemical acetylation of TFAM with acetyl-coenzyme A occurs preferentially on specific lysine residues, including those reported to be acetylated in exogenously expressed TFAM in cultured human cells, indicating that chemical acetylation plays a crucial role in TFAM acetylation in mitochondria. Intriguingly, the modification significantly decreased TFAM's DNA-unwinding ability, while its DNA-binding ability was largely unaffected. Altogether, we propose TFAM is chemically acetylated in vivo, which could change mitochondrial DNA topology, leading to copy number and gene expression modulation.

  5. The accessory subunit of human DNA polymerase γ is required for mitochondrial DNA maintenance and is able to stabilize the catalytic subunit. 国際誌

    Yura Do, Shigeru Matsuda, Teppei Inatomi, Kazuto Nakada, Takehiro Yasukawa, Dongchon Kang

    Mitochondrion 53 133-139 2020年7月

    DOI: 10.1016/j.mito.2020.05.008  

    詳細を見る 詳細を閉じる

    Human DNA polymerase γ (POLG) is a mitochondria-specific replicative DNA polymerase consisting of a single catalytic subunit, POLGα, and a dimeric accessory subunit, POLGβ. To gain a deeper understanding of the role of POLGβ, we knocked out this protein in cultured human cybrid cells and established numerous knockout clones. POLGβ-knockout clones presented a clear phenotype of mitochondrial DNA loss, indicating that POLGβ is necessary for mitochondrial DNA replication. Moreover, POLGβ-knockout cells showed a severe decrease in POLGα levels and acute suppression of POLGβ expression efficiently down-regulated POLGα levels. These results suggest that, in addition to its role as the processivity factor of POLG, POLGβ acts as a POLGα stabilizer, an important role for POLGβ in mitochondrial DNA maintenance.

  6. Epigenetic features of mitochondrial DNA

    Takehiro Yasukawa, Shigeru Matsuda, Dongchon Kang

    The Human Mitochondrial Genome: From Basic Biology to Disease 71-85 2020年1月1日

    DOI: 10.1016/B978-0-12-819656-4.00003-6  

  7. Accurate estimation of 5-methylcytosine in mammalian mitochondrial DNA. 国際誌

    Shigeru Matsuda, Takehiro Yasukawa, Yuriko Sakaguchi, Kenji Ichiyanagi, Motoko Unoki, Kazuhito Gotoh, Kei Fukuda, Hiroyuki Sasaki, Tsutomu Suzuki, Dongchon Kang

    Scientific reports 8 (1) 5801-5801 2018年4月11日

    DOI: 10.1038/s41598-018-24251-z  

    詳細を見る 詳細を閉じる

    Whilst 5-methylcytosine (5mC) is a major epigenetic mark in the nuclear DNA in mammals, whether or not mitochondrial DNA (mtDNA) receives 5mC modification remains controversial. Herein, we exhaustively analysed mouse mtDNA using three methods that are based upon different principles for detecting 5mC. Next-generation bisulfite sequencing did not give any significant signatures of methylation in mtDNAs of liver, brain and embryonic stem cells (ESCs). Also, treatment with methylated cytosine-sensitive endonuclease McrBC resulted in no substantial decrease of mtDNA band intensities in Southern hybridisation. Furthermore, mass spectrometric nucleoside analyses of highly purified liver mtDNA preparations did not detect 5-methyldeoxycytidine at the levels found in the nuclear DNA but at a range of only 0.3-0.5% of deoxycytidine. Taken together, we propose that 5mC is not present at any specific region(s) of mtDNA and that levels of the methylated cytosine are fairly low, provided the modification occurs. It is thus unlikely that 5mC plays a universal role in mtDNA gene expression or mitochondrial metabolism.

  8. Cdk5rap1-mediated 2-methylthio-N6-isopentenyladenosine modification is absent from nuclear-derived RNA species. 国際誌

    Md Fakruddin, Fan Yan Wei, Shohei Emura, Shigeru Matsuda, Takehiro Yasukawa, Dongchon Kang, Kazuhito Tomizawa

    Nucleic acids research 45 (20) 11954-11961 2017年11月16日

    DOI: 10.1093/nar/gkx819  

    詳細を見る 詳細を閉じる

    2-Methylthio-N6-isopentenyl modification of adenosine (ms2i6A) is an evolutionally conserved modification that is found in transfer RNAs (tRNAs). We have recently shown that Cdk5 regulatory subunit-associated protein 1 (Cdk5rap1) specifically converts i6A to ms2i6A at position A37 of four mitochondrial DNA-encoded tRNAs, and that the modification regulates efficient mitochondrial translation and energy metabolism in mammals. Curiously, a previous study reported that ms2i6A is present abundantly in nuclear-derived RNA species such as microRNAs, but not in tRNA fractions. To fully understand the molecular property of ms2i6A, the existence of non-canonical ms2i6A must be carefully validated. In the present study, we examined ms2i6A in total RNA purified from human and murine ρ0 cells, in which mitochondrial DNA-derived tRNAs were completely depleted. The ms2i6A was not detected in these cells at all. We generated a monoclonal antibody against ms2i6A and examined ms2i6A in murine RNAs using the antibody. The anti-ms2i6A antibody only reacted with the tRNA fractions and not in other RNA species. Furthermore, immunocytochemistry analysis using the antibody showed the predominant localization of ms2i6A in mitochondria and co-localization with the mitochondrial elongation factor Tu. Taken together, we propose that ms2i6A is a mitochondrial tRNA-specific modification and is absent from nuclear-encoded RNA species.

︎全件表示 ︎最初の5件までを表示

MISC 18

  1. ミトコンドリア内転写開始複合体の可視化システムの開発

    松田盛, 中村行則, 魏范研

    日本分子生物学会年会プログラム・要旨集(Web) 47th 2024年

  2. ミトコンドリア転写伸長因子TEFMはミトコンドリアDNAの複製と転写のバランス制御に重要な役割を果たす

    安川武宏, 安川武宏, 松田盛, 松田盛, 中山益成, 都由羅, 石内崇, 石内崇, 八木美佳子, 八木美佳子, SJOERD Wanrooij, 中田和人, 魏范研, 一柳健司, 一柳健司, 佐々木裕之, 康東天

    日本分子生物学会年会プログラム・要旨集(Web) 47th 2024年

  3. Split-GFPによるmtDNA転写開始複合体の可視化とミトコンドリア転写調節因子の探索法の開発に向けて

    松田盛, 中村行則, 魏笵研

    日本ミトコンドリア学会年会要旨集 21st 2023年

  4. Split-GFPを用いたミトコンドリア転写開始複合体可視化システムの検証

    中村行則, 松田盛, 魏笵研

    日本ミトコンドリア学会年会要旨集 21st 2023年

  5. ミトコンドリア内転写開始複合体の可視化とその有用性について

    松田盛, 中村行則, 中村行則, 魏笵研

    日本生化学会大会(Web) 96th 2023年

  6. ミトコンドリア転写伸長因子TEFMはmtDNA複製開始制御に関与する

    松田盛, 中山益成, 都由羅, 八木美佳子, 石内崇士, 中田和人, 一柳健司, 佐々木裕之, 安川武宏, KANG Dongchon

    日本分子生物学会年会プログラム・要旨集(Web) 45th 2022年

  7. ヒトミトコンドリアDNAの転写-複製の調節メカニズム

    中山益成, 松田盛, 都由羅, 安川武宏, KANG Dongchon

    日本分子生物学会年会プログラム・要旨集(Web) 44th 2021年

  8. ミトコンドリア転写伸長因子TEFMはmtDNA複製開始の促進に寄与する

    松田盛, 中山益成, 石内崇士, 中田和人, 一柳健司, 佐々木裕之, 安川武宏, 康東天

    日本ミトコンドリア学会年会要旨集 20th 2021年

  9. 多様なRNA-DNAハイブリッド形成に支えられている哺乳動物ミトコンドリアDNAの複製メカニズム

    安川武宏, 松田盛, 稲冨鉄平, 都由羅, 阿部周策, 石内崇, 中田和人, 一柳健司, 佐々木裕之, 康東天

    日本生化学会大会(Web) 93rd 2020年

  10. 哺乳動物ミトコンドリアDNA複製における複製開始メカニズムの研究

    安川武宏, 松田盛, 稲冨鉄平, 都由羅, 石内崇士, 阿部周策, 中田和人, 一柳健司, 佐々木裕之, 康東天

    日本分子生物学会年会プログラム・要旨集(Web) 43rd 2020年

  11. ヒトミトコンドリアDNA転写-複製の新規調節メカニズムの提唱

    松田盛, 稲冨鉄平, 中田和人, 安川武宏, 康東天

    日本分子生物学会年会プログラム・要旨集(Web) 42nd 2019年

  12. 複雑でユニークなミトコンドリアDNA複製メカニズム

    安川武宏, 松田盛, 稲冨鉄平, 都由羅, 阿部周策, 石内崇士, 中田和人, 一柳健司, 佐々木裕之, 康東天

    日本分子生物学会年会プログラム・要旨集(Web) 42nd 2019年

  13. ミトコンドリアDNA複製開始メカニズム解明に向けた転写開始複合体タンパク質へのアプローチ

    稲冨鉄平, 松田盛, 阿部周策, 都由羅, 石内崇士, 中田和人, 一柳健司, 佐々木裕之, 安川武宏, 康東天

    日本分子生物学会年会プログラム・要旨集(Web) 42nd 2019年

  14. DNAポリメラーゼγアクセサリサブユニットPOLG2は触媒サブユニットPOLG1安定化とmtDNA維持に必須である

    都由羅, 松田盛, 稲冨鉄平, 中田和人, 安川武宏, 康東天

    日本分子生物学会年会プログラム・要旨集(Web) 42nd 2019年

  15. ヒトミトコンドリアDNAの複製-転写の相互的制御に関する研究

    松田盛, 稲冨鉄平, 中田和人, 安川武宏, 康東天

    日本分子生物学会年会プログラム・要旨集(Web) 41st 2018年

  16. ミトコンドリア転写開始複合体ノックアウト細胞株樹立によるヒトミトコンドリアDNA複製機構の解析

    稲冨鉄平, 松田盛, 中田和人, 安川武宏, 康東天

    日本分子生物学会年会プログラム・要旨集(Web) 41st 2018年

  17. ミトコンドリアDNAメチル化修飾の解析~ミトコンドリアゲノムにエピジェネティクスは存在するのか

    安川武宏, 松田盛, 坂口裕理子, 鵜木元香, 後藤和人, 福田渓, 一柳健司, 鈴木勉, 佐々木裕之, 康東天

    日本分子生物学会年会プログラム・要旨集(Web) 39th 2016年

  18. ミトコンドリアゲノムエピジェネティクスは存在するか~mtDNAメチル化修飾の解析~

    安川武宏, 松田盛, 鵜木元香, 坂口裕理子, 福田渓, 後藤和人, 一柳健司, 鈴木勉, 佐々木裕之, 康東天

    日本ミトコンドリア学会年会要旨集 15th 2015年

︎全件表示 ︎最初の5件までを表示

共同研究・競争的資金等の研究課題 5

  1. 新規探索ツールによるミトコンドリア内転写因子と疾患・老化の関連の解析

    松田 盛

    2024年4月1日 ~ 2026年3月31日

  2. 修飾RNA代謝を基軸とする生体恒常性ネットワークの解明

    小川 亜希子, 松田 盛, 魏 范研

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research

    研究種目:Grant-in-Aid for Scientific Research (B)

    研究機関:Tohoku University

    2022年4月1日 ~ 2026年3月31日

  3. RNAモドミクスを基軸とする新規核酸生理学の開拓

    魏 范研, 小川 亜希子, 松田 盛

    2021年4月1日 ~ 2025年3月31日

  4. 加齢に伴うミトコンドリアDNA複製の変容と新規老化制御機構の解明

    松田 盛

    2022年4月1日 ~ 2024年3月31日

  5. ミトコンドリアのエピゲノム修飾がもたらす加齢現象の解明

    松田 盛

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research

    研究種目:Grant-in-Aid for Research Activity Start-up

    研究機関:Tohoku University

    2020年9月11日 ~ 2022年3月31日

    詳細を見る 詳細を閉じる

    ミトコンドリア独自のゲノムであるミトコンドリアDNA(mtDNA)は老化においては、その変異が加齢に伴う個体機能低下と強く相関しており、老化制御に向けてmtDNA変異の分子機構の解明が重要な課題である。超加齢マウス(~24ヶ月齢)のマウス臓器では、mtDNAの転写-複製に関連するタンパク質のうち、超加齢マウスでミトコンドリア転写伸長因子TEFMの増加が観察された。met-tRNAを始めとしたtRNAは肝臓・腎臓・心臓のどの臓器も有意に減少していた。加齢に伴うmtDNA転写翻訳機構の破綻が、十分な修飾tRNA供給を阻害し、加齢によるミトコンドリア機能低下の一因である可能性が示唆された。