研究者詳細

顔写真

ナイトウ カンタ
内藤 貫太
Kanta Naito
所属
大学院情報科学研究科 システム情報科学専攻 システム情報数理学講座(システム情報数理学II分野)
職名
教授
学位
  • 博士(理学)(広島大学)

  • 修士(理学)(島根大学)

経歴 5

  • 2024年4月 ~ 継続中
    東北大学大学院情報科学研究科 教授

  • 2018年9月 ~
    千葉大学理学部数学・情報数理学科 教授

  • 2012年4月 ~
    島根大学総合理工学部数理・情報システム学科 教授

  • 2004年1月 ~
    島根大学総合理工学部数理・情報システム学科 准教授

  • 1998年2月 ~
    島根大学 総合理工学部 数理・情報システム学科 講師

学歴 4

  • 広島大学 理学部

    1997年4月 ~ 1998年1月

  • 広島大学 大学院理学研究科 数学専攻

    1994年4月 ~ 1997年3月

  • 島根大学 大学院理学研究科 数学専攻

    1992年4月 ~ 1994年3月

  • 島根大学 理学部 数学

    1988年4月 ~ 1992年3月

委員歴 4

  • 統計関連学会連合 統計関連学会連合大会 プログラム委員長

    2024年12月 ~ 継続中

  • Associate Editor, Journal of the Korean Statistical Society

    2012年 ~ 継続中

  • Associate Editor, Annals of the Institute of Statistical Mathematics

    2012年 ~ 継続中

  • 統計関連学会連合 統計関連学会連合大会 プログラム委員

    2023年12月 ~ 2024年12月

所属学協会 7

  • アメリカ統計協会

  • 数理統計学会

  • 日本応用統計学会

  • 日本行動計量学会

  • 日本応用数理学会

  • 日本数学会

  • 日本統計学会

︎全件表示 ︎最初の5件までを表示

研究キーワード 4

  • セミパラメトリック平滑化

  • 多変量解析

  • ノンパラメトリック平滑化

  • 関数推定

研究分野 2

  • 自然科学一般 / 応用数学、統計数学 /

  • 情報通信 / 統計科学 /

論文 51

  1. Simultaneous confidence region of an embedded one-dimensional curve in multi-dimensional space 査読有り

    Hiroya Yamazoe, Kanta Naito

    Computational Statistics and Data Analysis Article 107891 2024年4月

    DOI: 10.1016/j.csda.2023.107891  

  2. Robustness of Principal Component Analysis with Spearman’s Rank Matrix 査読有り

    Koudai Watanabe, Kanta Naito, Inge Koch

    Journal of Statistical Theory and Practice 18 Article 6 2024年1月

    DOI: 10.1007/s42519-023-00358-z  

  3. Kernel density estimation by stagewise algorithm with a simple dictionary 査読有り

    Kiheiji Nishida, Kanta Naito

    Computationa Statistics 39 523-560 2022年12月

  4. Support vector regression with penalized likelihood 査読有り

    Takumi Uemoto, Kanta Naito

    Computational Statistics and Data Analysis 174 107522-107522 2022年10月

    出版者・発行元: Elsevier BV

    DOI: 10.1016/j.csda.2022.107522  

    ISSN:0167-9473

  5. Principal component analysis of standard and spherical covariances from the population and random samples to real and simulated data 査読有り

    Inge Koch, Lyron Winderbaum, Kanta Naito

    American Journal of Theoretical and Applied Statistics 11 (4) 122-139 2022年7月

  6. Improvement on LASSO-type estimator in nonparametric regression 査読有り

    Yuki Matsushima, Kanta Naito

    Journal of Nonparametric Statistics 1-23 2022年6月18日

    出版者・発行元: Informa UK Limited

    DOI: 10.1080/10485252.2022.2085700  

    ISSN:1048-5252

    eISSN:1029-0311

  7. Regression using localised functional Bregman divergence 査読有り

    Kanta Naito, Spiridon Penev

    Electronic Journal of Statistics 15 (2) 6544-6585 2021年12月28日

    出版者・発行元: Institute of Mathematical Statistics

    DOI: 10.1214/21-ejs1947  

    ISSN:1935-7524

  8. Asymptotics and practical aspects of testing normality with kernel methods. 査読有り

    Natsumi Makigusa, Kanta Naito

    Journal of Multivariate Analysis 180 Article104665 2020年11月

  9. Asymptotic normality of a consistent estimator of maximum mean discrepancy in Hilbert space. 査読有り

    Natsumi Makigusa, Kanta Naito

    Statistics and Probability Letters 156 Article108596 2020年1月

  10. Asymptotic theory for local estimators based on Bregman divergence 査読有り

    Kenta Kawamura, Kanta Naito

    Canadian Journal of Statistics 47 (4) 628-652 2019年12月

    出版者・発行元: Wiley

    DOI: 10.1002/cjs.11516  

    ISSN:0319-5724

    eISSN:1708-945X

  11. High dimensional asymptotics for the naive Hotelling T2 statistic in pattern recognition 査読有り

    Mitsuru Tamatani, Kanta Naito

    Communications in Statistics - Theory and Methods 48 (22) 5637-5656 2019年11月17日

    出版者・発行元: Informa UK Limited

    DOI: 10.1080/03610926.2018.1517217  

    ISSN:0361-0926

    eISSN:1532-415X

  12. Regression with stagewise minimization on risk function 査読有り

    Takuma Yoshida, Kanta Naito

    Computational Statistics & Data Analysis 134 123-143 2019年6月

    出版者・発行元: Elsevier BV

    DOI: 10.1016/j.csda.2018.12.011  

    ISSN:0167-9473

  13. Kernel naive Bayes discrimination for high-dimensional pattern recognition. 査読有り

    Inge Koch, Kanta Naito, Hiroaki Tanaka

    Australian and New Zealand Journal of Statistics 61 401-428 2019年

  14. The LMSR method for providing a multidimensional understanding of growth standard in human fetuses 査読有り

    Kanta Naito, Shouta Shimizu, Jun Udagawa, Hiroki Otani

    Statistical Methods in Medical Research 27 2809-2830 2018年9月1日

    DOI: 10.1177/0962280216687339  

    ISSN:0962-2802

  15. Locally robust methods and near-parametric asymptotics 査読有り

    Spiridon Penev, Kanta Naito

    Journal of Multivariate Analysis 167 395-417 2018年9月1日

    DOI: 10.1016/j.jmva.2018.06.006  

    ISSN:0047-259X

  16. Statistical analysis with dilatation for development process of human fetuses 査読有り

    Kanta Naito, Akifumi Notsu, Jun Udagawa, Hiroki Otani

    STATISTICAL METHODS IN MEDICAL RESEARCH 26 (1) 176-200 2017年2月

    DOI: 10.1177/0962280214543405  

    ISSN:0962-2802

    eISSN:1477-0334

  17. Data sharpening on unknown manifold 査読有り

    Masaki Kudo, Kanta Naito

    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS 46 (23) 11721-11744 2017年

    DOI: 10.1080/03610926.2016.1277756  

    ISSN:0361-0926

    eISSN:1532-415X

  18. Statistical analyses in trials for the comprehensive understanding of organogenesis and histogenesis in humans and mice 査読有り

    Hiroki Otani, Jun Udagawa, Kanta Naito

    JOURNAL OF BIOCHEMISTRY 159 (6) 553-561 2016年6月

    DOI: 10.1093/jb/mvw020  

    ISSN:0021-924X

    eISSN:1756-2651

  19. Asymptotics for penalised splines in generalised additive models 査読有り

    Takuma Yoshida, Kanta Naito

    JOURNAL OF NONPARAMETRIC STATISTICS 26 (2) 269-289 2014年4月

    DOI: 10.1080/10485252.2014.899360  

    ISSN:1048-5252

    eISSN:1029-0311

  20. Multi-class discriminant function based on canonical correlation in high dimension low sample size 査読有り

    Mitsuru Tamatani, Kanta Naito, Inge Koch

    Bulletin of Informatics and Cybernetics 45 67-101 2013年

  21. Density estimation with minimization of U-divergence 査読有り

    Kanta Naito, Shinto Eguchi

    MACHINE LEARNING 90 (1) 29-57 2013年1月

    DOI: 10.1007/s10994-012-5298-3  

    ISSN:0885-6125

  22. Pattern recognition based on canonical correlations in a high dimension low sample size context 査読有り

    Mitsuru Tamatani, Inge Koch, Kanta Naito

    JOURNAL OF MULTIVARIATE ANALYSIS 111 350-367 2012年10月

    DOI: 10.1016/j.jmva.2012.04.011  

    ISSN:0047-259X

  23. Polynomial Histograms for Multivariate Density and Mode Estimation 査読有り

    Junmei Jing, Inge Koch, Kanta Naito

    SCANDINAVIAN JOURNAL OF STATISTICS 39 (1) 75-96 2012年3月

    DOI: 10.1111/j.1467-9469.2011.00764.x  

    ISSN:0303-6898

  24. Asymptotics for penalized additive B-spline regression 査読有り

    Journal of the Japan Statistical Society 42 81-107 2012年

  25. Semiparametric penalized spline regression 査読有り

    Takuma Yoshida, Kanta Naito

    Bulletin of Informatics and Cybernetics 44 65-86 2012年

  26. Selection of smoothing parameter for one-step sparse estimates with Lq penalty 査読有り

    Masaru Kanba, Kanta Naito

    Journal of Data Sciences 9 565-584 2011年

  27. A computationally efficient model selection in the generalized linear mixed model 査読有り

    Takuma Yoshida, Masaru Kanba, Kanta Naito

    COMPUTATIONAL STATISTICS 25 (3) 463-484 2010年9月

    DOI: 10.1007/s00180-010-0187-3  

    ISSN:0943-4062

  28. Analysis of the harmonized growth pattern of fetal organs by multidimensional scaling and hierarchical clustering 査読有り

    Jun Udagawa, Akira Yasuda, Kanta Naito, Hiroki Otani

    CONGENITAL ANOMALIES 50 (3) 175-185 2010年9月

    DOI: 10.1111/j.1741-4520.2010.00284.x  

    ISSN:0914-3505

  29. Multidimensional standard curve for the development process of human fetuses 査読有り

    K. Naito, J. Udagawa, H. Otani

    STATISTICS IN MEDICINE 29 (21) 2235-2245 2010年9月

    DOI: 10.1002/sim.3952  

    ISSN:0277-6715

  30. Prediction of multivariate responses with a selected number of principal components 査読有り

    Inge Koch, Kanta Naito

    COMPUTATIONAL STATISTICS & DATA ANALYSIS 54 (7) 1791-1807 2010年7月

    DOI: 10.1016/j.csda.2010.01.030  

    ISSN:0167-9473

  31. Bandwidth selection for a data sharpening estimator in nonparametric regression 査読有り

    Kanta Naito, Masahiro Yoshizaki

    JOURNAL OF MULTIVARIATE ANALYSIS 100 (7) 1465-1486 2009年8月

    DOI: 10.1016/j.jmva.2008.12.016  

    ISSN:0047-259X

  32. On an efficient model selection in spline mixed model 査読有り

    Masaru Kanba, Takuma Yoshida, Kanta Naito

    Proceedings of IASC2008 799-808 2008年12月

  33. Dimension selection for feature selection and dimension reduction with principal and independent component analysis 査読有り

    Inge Koch, Kanta Naito

    Neural Computation 19 (2) 513-545 2007年

    出版者・発行元: MIT Press Journals

    DOI: 10.1162/neco.2007.19.2.513  

    ISSN:1530-888X 0899-7667

  34. Non-parametric kernel regression for multinomial data 査読有り

    Hidenori Okumura, Kanta Naito

    JOURNAL OF MULTIVARIATE ANALYSIS 97 (9) 2009-2022 2006年10月

    DOI: 10.1016/j.jmvra.2005.12.008  

    ISSN:0047-259X

  35. Bandwidth selection for kernel binomial regression 査読有り

    Hidenori Okumura, Kanta Naito

    JOURNAL OF NONPARAMETRIC STATISTICS 18 (4-6) 343-356 2006年5月

    DOI: 10.1080/10485250601014230  

    ISSN:1048-5252

  36. Semiparametric density estimation by local L-2-fitting 査読有り

    Kanta Naito

    ANNALS OF STATISTICS 32 (3) 1162-1191 2004年6月

    DOI: 10.1214/009053604000000319  

    ISSN:0090-5364

  37. Weighted kernel estimators in nonparametric binomial regression 査読有り

    H Okumura, K Naito

    JOURNAL OF NONPARAMETRIC STATISTICS 16 (1-2) 39-62 2004年2月

    DOI: 10.1080/1048525031000162428  

    ISSN:1048-5252

  38. Practical aspects of bias reducing estimators in nonparametric regression 査読有り

    Masahiro Yoshizaki, Kanta Naito

    Japanese Journal of Applied Statistics 32 131-155 2004年

  39. A kernel smoothing in quantal bioassay 査読有り

    Hidenori Okumura, Kanta Naito

    Japanese Journal of Applied Statistics 32 127-144 2004年

  40. Asymptotic theory for the multiscale wavelet density derivative estimator 査読有り

    T Ochiai, K Naito

    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS 32 (10) 1925-1950 2003年

    DOI: 10.1081/STA-120023260  

    ISSN:0361-0926

  41. Semiparametric density estimation with additive adjustment 査読有り

    Kanta Naito

    Advances in Statistics, Combinatorics and Related Areas 196-204 2002年

  42. Semiparametric regression with multiplicative adjustment 査読有り

    Kanta Naito

    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS 31 (12) 2289-2309 2002年

    DOI: 10.1081/STA-120017226  

    ISSN:0361-0926

  43. Heteroscedasticity checks for regression models 査読有り

    Li-Xing Zhu, Yasunori Fujikoshi and Kanta Naito

    Science in China, Series A, Mathematics, Physics, Astronomy 44 (10) 1236-1252 2001年

  44. On a certain class of nonparametric density estimators with reduced bias 査読有り

    Kanta Naito

    STATISTICS & PROBABILITY LETTERS 51 (1) 71-78 2001年1月

    DOI: 10.1016/S0167-7152(00)00145-0  

    ISSN:0167-7152

  45. Approximation of the power of kurtosis test for multinormality 査読有り

    K Naito

    JOURNAL OF MULTIVARIATE ANALYSIS 65 (2) 166-180 1998年5月

    DOI: 10.1006/jmva.1997.1728  

    ISSN:0047-259X

  46. Stability of correspondence analysis and its alternative using Hellinger distance for contingency table 査読有り

    Teruyuki Nakayama, Kanta Naito, Yasunori Fujikoshi

    Internatinal Journal of Mathematical and Statistical Sciences 7 (1) 97-119 1998年

  47. Stability of the multidimensional scaling with an error model 査読有り

    Kanta Naito, Sinya Murata, Yasunori Fujikoshi

    Journal of the Japan Statistical Society 27 (1) 77-91 1997年

    出版者・発行元: The Japan Statistical Society

    DOI: 10.14490/jjss1995.27.77  

    ISSN:1882-2754

    eISSN:1348-6365

  48. A generalized projection pursuit procedure and its significance level 査読有り

    NAITO Kanta

    Hiroshima mathematical journal 27 (3) 513-554 1997年

    出版者・発行元: 広島大学

    ISSN:0018-2079

  49. On the asymptotic normality of the L2-distance class of statistics with estimated parameters 査読有り

    Kanta Naito

    Journal of Nonparametric Statistics 8 (3) 199-214 1997年

    出版者・発行元: Taylor and Francis Inc.

    DOI: 10.1080/10485259708832720  

    ISSN:1048-5252

  50. On weighting the studentized empirical characteristic function for testing normality 査読有り

    Kanta Naito

    Communications in Statistics, Simulation and Computation 25 (1) 201-213 1996年

  51. Modification of statistics based on the empirical characteristic function to yield asymptotic normality 査読有り

    Kanta Naito

    Communications in Statistics - Theory and Methods 25 (1) 105-114 1996年

    出版者・発行元: Marcel Dekker Inc.

    DOI: 10.1080/03610929608831682  

    ISSN:0361-0926

︎全件表示 ︎最初の5件までを表示

MISC 3

  1. Uロス関数に基づいた密度推定のためのブースティング

    小森 理, 内藤 貫太, 江口 真透

    電子情報通信学会技術研究報告. IBISML, 情報論的学習理論と機械学習 = IEICE technical report. IBISML, Information-based induction sciences and machine learning 110 (265) 73-82 2010年10月28日

    出版者・発行元: 一般社団法人電子情報通信学会

    ISSN: 0913-5685

    詳細を見る 詳細を閉じる

    本論文ではブースティングによる密度推定のための方法のクラスを提案する.単調増加で凸な実数値関数Uから導かれるUロス関数の逐次最小化に基づき,ブースティングの教師なし学習のアルゴリズムを考察する.学習アルゴリズムは,予め用意された弱学習機(密度関数)の集合の中から逐次的に,最適な弱学習機を前ステップの密度推定量と凸結合させることで構成される.このクラスの中で適切な密度推定を導く生成関数Uを選択したい.特に, Uとしてβのべき指数関数を考えると,β=1のときUロス関数の最小化はL_2ロスの最小化と同値となる.また,β=0の極限を考えると,Uロス関数は負の対数尤度関数となる.それゆえ,今回の提案手法はL_2ロスや尤度関数を含んだより柔軟な推定法と言える.学習アルゴリズムの更新式において更新されたUロス関数を2つの項に分解されることを示して,最適な弱学習機の過剰学習を防ぐ正則化の働きがあることを明らかにする.更にこのブースティングで得られた密度関数の非漸近的な誤差限界の一般公式を導出する.最後に,これらの得られた結果を数値的な実験によって確認する.

  2. Bandwidth selection for kernel smoothing in binomial regression

    奥村 英則, 内藤 貫太

    日本統計学会講演報告集 71 129-130 2003年9月1日

  3. Nonparametric regression with additive adjustment

    内藤貫太

    統計数理研究所共同研究リポート 155 115-128 2002年

書籍等出版物 4

  1. 統計科学百科事典

    Lovric, Miodrag, 日本統計学会

    丸善出版 2018年12月

    ISBN: 9784621303108

  2. 医学統計学ハンドブック

    丹後俊郎, 松井茂之

    朝倉書店 2018年7月

    ISBN: 9784254122299

  3. 確率・統計

    中田寿夫, 内藤貫太

    学術図書出版社 2017年10月

    ISBN: 9784780605969

  4. 医学統計学の事典

    丹後俊郎, 小西貞則(編集)

    朝倉書店 2010年6月

    ISBN: 9784254121766

講演・口頭発表等 3

  1. 生物種の多次元的成長過程の推測 ー多次元空間における1次元曲線の同時信頼領域ー 招待有り

    内藤貫太

    久留米大学バイオ統計センター公開セミナー 2024年12月10日

  2. Semiparametric function estimation with localized Bregman divergence 招待有り

    Kanta Naito

    Waseda Seminar on Mathematical Statistics 2024年11月8日

  3. 多次元空間における埋め込み1次元曲線の同時信頼領域

    内藤貫太

    青葉山統計科学セミナー 2024年5月8日

共同研究・競争的資金等の研究課題 14

  1. 高次元統計解析に有効な関数推定法の深化・展開研究

    内藤 貫太

    2023年4月1日 ~ 2027年3月31日

  2. 化学分析と数理統計解析に基づく高精度かつ簡便な考古学石材の原産地推定法の確立

    亀井 淳志, 隅田 祥光, 岩本 崇, 内藤 貫太, 三瓶 良和, 芝 康次郎

    2019年6月28日 ~ 2022年3月31日

    詳細を見る 詳細を閉じる

    島根県出雲地方の古墳石材研究および西南日本各地の黒曜石原産地研究を実施した.出雲の古墳石材研究では,出雲市~松江市にかけての代表的な石棺式石室(50地点以上)の端切れ石材など分析可能試料を採取・整理した.これは以前の発掘調査により採取された試料も利用した.また石材の原産地候補と考えられる地質調査に関しては,出雲地方の久利層流紋岩類,大森層砂岩,大森層デイサイト牛切層砂岩の調査を開始した.当初,古墳石材と地層岩石の岩相の類似性を確認するのみで十分と計画していたが,古墳の石材現地調査では肉眼観察に加えた携帯型カッパーメーターによる帯磁率測定(非破壊分析かつ3秒で1点の測定が可能)が非常に有効であると分かった.そこで,現地古墳観察および野外での地層試料採取の際には帯磁率データも合わせて取得することとした.地層試料の採取は主に出雲地方で終了した.松江市方面は未調査である.古墳石材試料についてはXRF分析を順調に終えた.地層試料の分析については,いまだ未調査地も残ることから次年度に実施する. 中国~九州地方の黒曜石原産地研究については,佐賀県の腰岳,椎葉川,亀浦,長崎県の別当,針生島,淀姫,大崎半島,壱岐久喜,壱岐初瀬,壱岐箱崎,そして島根県の隠岐久見,隠岐加茂,隠岐津井の計13カ所の地質調査および黒曜石原石採取を実施した.これらより採取した黒曜石原石については,島根県の試料を除いて,薄片観察・記載およびXRF分析を計画通り実施した.島根県の試料は次年度に処理する.LAラマンを用いた黒曜石中の微細構成物分析は試料準備まで進めた.

  3. セミパラメトリック関数推定に基づく統計解析の新たな展開

    内藤 貫太

    2019年4月1日 ~ 2022年3月31日

    詳細を見る 詳細を閉じる

    交付申請書に記載のように、2019年度からの3年間で3つのサブテーマを掲げ、それらの研究が糾う中で、関数推定の研究を更に太く推進する。2019年度は2つのサブテーマでの実績が得られた。 サブテーマ「様々な関数推定法の評価」における実績としては、高次元パターン認識で有効となる判別手法の構築とその理論的評価、そしてステージワイズ最小化による回帰関数推定の理論の構築が挙げられる。高次元パターン認識においては、カーネル・ナイーブ・ベイズ判別分析手法とその平滑化バージョンを構築・提案し、その高次元での漸近的結果を導出すると共に、様々な高次元小標本データへの適用を通して、その有効性を確認できた。また、ナイーブ・正準相関という判別手法に現れる固有根の高次元漸近理論を構築した。それを用いることで、誤判別率の見積もりが可能となった。ステージワイズ最小化という機械学習に基づく回帰分析アルゴリズムを提案・構築し、そのアルゴリズムで得られる推定量のリスクの非漸近的誤差限界を導出した。アルゴリズムを反復することで推定量が作られるため、推定量の構築には一定の時間を要するものの、最終的に得られる推定量は従来の有効な推定量よりも良い場合があることを、様々な実データへの適用を通して確認できた。 サブテーマ「理論的拡張と深化」では、局所的ダイバージェンスによって得られるパラメータの推定量についての漸近理論を構築したことが実績となる。局所的ダイバージェンスに基づく方法は、局所的でない大域的な従来方法と比較して、漸近的に大域的リスクを改善することが経験的、数値的に知られていた。しかしながらその理論的結果の導出のためには、パラメータの推定量の漸近的一致性の導出が必要であった。局所的ダイバージェンスから導かれるある関数のクラスを構築し、それがボレル・カンテリクラスになることを証明することで一致性が証明された。

  4. 高次元セミパラメトリック推測と機械学習

    内藤 貫太, 吉田 拓真, 玉谷 充, 野津 昭文

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)

    研究種目:Grant-in-Aid for Scientific Research (C)

    2015年4月1日 ~ 2019年3月31日

    詳細を見る 詳細を閉じる

    3つのテーマそれぞれで成果を得た。テーマ「パターン認識」では、ナイーブ正準相関係数の高次元漸近理論、歪曲度による統計解析手法の構築が成果となる。テーマ「密度関数の推定」では、頑健な局所密度推定法の構築が成された。さらに、テーマ「回帰関数の推定」では、経験リスク最小化アルゴリズムによる回帰関数の推定法の構築と得られた推定量の理論的評価、説明変数が未知の低次元多様体に埋め込まれている設定でのノンパラメトリック回帰推定量の構築と理論的評価、LMSR法と呼ばれる非線形多変量回帰手法の構築とその応用が成果となる。

  5. 器官・組織形成期の発生異常に基づく上皮管腔組織形成障害

    大谷 浩, 八田 稔久, 宇田川 潤, 橋本 龍樹, 内藤 貫太, 松本 暁洋, 古屋 智英, 小川 典子, 井上 隆之, 元矢 知志, 新田 哲哉, 倉本 純子, 平野 了, 兼田 稜, 佐伯 祐子, 武田 裕美子

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

    研究種目:Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

    研究機関:Shimane University

    2011年4月1日 ~ 2016年3月31日

    詳細を見る 詳細を閉じる

    上皮管腔組織の形態異常を評価するため、正常発生中の上皮管腔組織各部における総細胞数等の経時的な変化などの基本的情報を、組織計測的手法を含めた詳細な形態学的・数理解析により得て、遺伝子改変動物との比較を含め新知見を報告した。また全身の上皮管腔組織において細胞周期に同期した上皮細胞核の位置移動 (interkinetic nuclear migration)が存在して組織幹細胞の増殖分化調節機構として働き、形態異常に関わることを明らかにした。 胚操作法である子宮外発生法を改良して研究成果を論文発表し、肉眼レベルと細胞組織レベルをつなぐ高精度かつ効率的な立体観察のための標本透明化技術を開発した。

  6. 非対称・非線形統計理論と経済・生体科学への応用

    谷口 正信, 米本 孝二, 蛭川 潤一, 高木 祥司, 星野 伸明, 汪 金芳, 劉 慶豊, 内藤 貫太, 関谷 祐里, 松田 真一, 赤平 昌文, 竹村 彰通, 西山 慶彦, 狩野 裕, 天野 友之

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (A)

    研究種目:Grant-in-Aid for Scientific Research (A)

    研究機関:Waseda University

    2011年4月1日 ~ 2015年3月31日

    詳細を見る 詳細を閉じる

    極めて一般的なダイナミクスが非線形で革新過程の分布が非対称な時系列(非対称 CHARN)モデルは、生体、経済、金融、自然現象を広範囲にとらえるパラダイムモデルとなるものと期待される。本申請では、非対称CHARNモデルの最適推測論を局所漸近正規性(LAN)に基づいて構築した。また経験尤度法を、種々の確率過程、特に安定過程まで発展させることが出来た。さらには確率過程への縮小推定論の展開も行った。理論成果は、ポートフォリオ推測や、因果性解析へ応用した。また応用することで得られた知見から統計推測の数理理論、数学理論へフィードバックもはかり、我国の若手研究者を育成する中で理論と応用の双方の進展を得た。

  7. 予測・因果・不完全データ解析とサイエンスの基礎

    狩野 裕, 出口 康夫, 鷲尾 隆, 濱崎 俊光, 高木 祥司, 杉本 知之, 高井 啓二, 内藤 貫太, 清水 昌平, 片山 翔太, 山本 倫生

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)

    研究種目:Grant-in-Aid for Scientific Research (B)

    研究機関:Osaka University

    2010年4月1日 ~ 2014年3月31日

    詳細を見る 詳細を閉じる

    不完全データの統計解析問題は理論と応用の両面において重要な課題であり,特に,ランダムでない欠測(NMAR)への対処方法が長年の課題となっている.加えて,欠測値問題は統計的因果推論を議論する際の重要なフレームワークを与えている.いくつかの顕著な研究成果は,2重中途打ち切りデータに対する新しい推測方法の開発,LiNGAMによる潜在交絡変数が存在する場合の因果推測法の提案,shared-parameterモデルを用いた新たな統計的推測方法の提案,制約のあるEMアルゴリズムの開発などである.

  8. 関数推定に基づく機械学習と生物統計の横断的研究

    内藤 貫太, 吉田 拓真

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)

    研究種目:Grant-in-Aid for Scientific Research (C)

    研究機関:Shimane University

    2011年 ~ 2013年

    詳細を見る 詳細を閉じる

    関数推定をツールとした機械学習と生物統計の横断的研究として、深化研究(理論研究)、展開研究(方法論開発)、および応用研究を定めたエフォートに基づき進めた。深化研究では論文5本が出版され、当初の計画以上の進捗を得た。展開研究では、論文3本が出版され、当初の計画通りの成果が得られた。応用研究では、ヒト胎児データへの応用を念頭に、ある種の擬等角写像の歪曲度の極限分布を導出した。また非線形回帰手法であるLMS法を非線形多変量回帰の枠組みに拡張したLMSR法を考案し、ヒト胎児データの解析に果敢に応用した。

  9. 局所適合セミパラメトリック推測の新展開

    内藤 貫太

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)

    研究種目:Grant-in-Aid for Scientific Research (C)

    研究機関:Shimane University

    2008年 ~ 2010年

    詳細を見る 詳細を閉じる

    局所適合セミパラメトリック推測手法の理論的性質の解明と、生物統計への応用に貢献した。研究計画調書に沿って研究が進められた。局所適合セミパラメトリック平滑化の漸近理論の構築に進捗があった。モデル選択への応用についても成果を得た。更に、生物統計への応用として、線形写像とラディアル写像によるモデリングの元での歪曲度の分布論で新しい成果を得て、それをヒト胎児発生の調和度解析に応用した。

  10. 統計的因果推論の総合的研究

    狩野 裕, 柳本 武美, 山本 英二, 佐藤 俊哉, 熊谷 悦生, 山口 和範, 渡辺 美智子, 宮川 雅巳, 黒木 学, 繁桝 算男, 植野 真臣, 本村 陽一, 戸田山 和久, 一ノ瀬 正樹, 出口 康夫, 足立 浩平, 唐沢 かおり, 南風原 朝和, 乾 敏郎, 盛山 和夫, 清水 泰隆, 宮本 友介, 市川 雅教, 柳原 宏和, 内藤 貫太

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)

    研究種目:Grant-in-Aid for Scientific Research (B)

    研究機関:Osaka University

    2006年 ~ 2009年

    詳細を見る 詳細を閉じる

    少人数の定例研究会の開催,中規模研究集会の計画と開催,そして国際研究集会の編成と開催を通じて,統計科学,情報科学,社会科学(特に科学哲学を含む)において情報交換を積極的に行った.具体的な研究成果として,共分散選択のロバスト推定法の開発,非正規性の利用による因果の方向の同定,2×2分割表と潜在変数モデルにおける無視不可能な欠測に対する新たな分析方法の開発,条件付き確率と科学的証拠の関係の明確化などが得られた.

  11. 局所適合セミパラメトリック推測と統計的学習理論

    内藤 貫太

    2005年 ~ 2006年

    詳細を見る 詳細を閉じる

    交付申請書に記載された3つの研究(研究A,B,C)が総合的に進められた. 計量生物分野への応用として,発生学領域における毛周期解析およびヒト胎児発生のスタンダード曲線の構築に局所適合平滑化が引き続き応用された(研究C).生物学領域では,計画された投薬量にたいする反応の有無など,目的変数が離散の場合が重要となるが,そのような場合における新たな平滑化手法を構築し,そこに含まれる平滑化パラメータの選択を議論した(研究Aおよび研究C). 統計的学習理論との絡みで,反復局所適合平滑化による最小2乗ブースティングアルゴリズムを考察し,その挙動を数値的に調べた.そこに含まれる平滑化パラメータの選択に必要な理論計算を進めた.高次元データを扱う際にいずれにせよ何らかの次元縮小を前もって行う必要があるが,主成分分析と独立成分分析を組み合わせた新たな次元縮小アルゴリズムを考案し,そのアルゴリズムの応用による次元選択の手法も開発するとともに,その性質を調べた(研究B). 胎児形態計測データの解析において,臓器発生の多変量スタンダードの構築における次数選択および平滑化パラメータの選択の必要性からモデル選択の議論を行い,その基礎理論を与えた(研究A).また,発生過程の調和度解析という新たな研究方向を考案し,擬等角写像論に現れる最大歪曲度の推定を局所適合平滑化を用いて行うアルゴリズムを考案した(研究C).この量により胎児発生過程の調和度マップ作成の目途をつけた.

  12. 局所適合平滑化によるセミパラメトリック推測

    内藤 貫太

    2003年 ~ 2005年

    詳細を見る 詳細を閉じる

    共変量が多次元の設定での回帰問題において,加法的調整を持つようなフルにノンパラメトリックな回帰推定量について詳しく調べた.これは既存のデータシャープニング推定量と密接に関連していたのであるが,かなり議論が不十分な点があり,それを補う形でかつさらに発展させた形で幾つかの推測論的結果を導出した.具体的には,推定量の導出について理論的根拠を与えたこと,推定量のバイアス・分散の漸近的表現を既存の結果を含むより一般的な形で導出したこと,平滑化パラメータ(バンド幅ベクトル)のデータに基づく選択手法を提案しその挙動についても理論的考察を与えたこと,実際的状祝でのシミュレーションを多く加えたことが挙げられる.共変量が1次元の場合は推定量の利用における実際的側面を強調した議論を与えた. 2項回帰の枠組みにおいては,応答の分散の不均一性を取り込んだ形のセミパラメトリックな推定量を提案し,その理論的挙動および実際的挙動について議論を与えた.そこで提案された推定量は逆問題,すなわち生物検定法に応用が可能であり,実際にその推定量に基づく生物検定法を構成し,従来の手法との比較を交えてその挙動を考察し,提案手法の良さを確認できた.研究課題の一連の成果は2003年9月に名城大学で開催された2003年度統計関連学会連合大会,千葉大学で開催された日本数学会秋季総合分科会,12月に横浜市立大学で開催された科学研究費シンポジウムなどで発表した.

  13. 局所適合セミパラメトリックモデルによる推測理論

    内藤 貫太

    2001年 ~ 2002年

    詳細を見る 詳細を閉じる

    パラメトリックモデルを用いた平滑化推定量を初期推定量とし、その残差をノンパラメトリックに平滑化したセミパラメトリックな平滑化推定量を提案し、その推定量の挙動を理論的、数値的に調べてきた。今年度は特に散布図平滑化、いわゆる回帰について考察を与えてきた。 まずセミパラメトリック推定方式による回帰推定量のクラスを提案した。その際、残差を積的に捉えるのが特徴的であり、残差をノンパラメトリックに推定する統計量を調整項と呼んだ。理論的考察により、提案された推定量は、初期のパラメトリックモデルが母集団構造(真の回帰関数)の少なくとも近傍に構成された時には従来の単なるノンパラメトリック核型推定量を優越する事がわかり、その優越の度合いはパラメトリックモデルの持つバイアスが規定することを示せた。パラメトリックモデルがバイアスを持つ場合でも、調整項が残差に対して一致性を持つゆえ、提案された推定量自身は一致性を持つ事が証明され、調整を行う重要性が確認できた。 またその研究の関連として、加法的調整を持つフルにノンパラメトリックな回帰推定量を提案した。この推定量は従来から議論されてきたデータシャープニング法と関連している事がわかったが、これまで十分に議論されていなかった漸近バイアス式、漸近分散式の導出、バンド幅選択などについてかなり詳しい考察を与えた。研究課題の一連の成果は2002年9月に明星大学で開催された2002年度統計関連学会連合大会、12月に東京大学で開催された科研費シンポジウムなどで発表した。

  14. 局所適合セミパラメトリック平滑化の理論

    内藤 貫太

    1999年 ~ 2000年

    詳細を見る 詳細を閉じる

    パラメトリックモデルを用いた平滑化推定量を初期推定量とし、その残差をノンパラメトリックに平滑化したセミパラメトリックな平滑化推定量を提案し、その推定量の良さ・挙動を理論的、数値的に調べてきた。回帰においては、このセミパラメトリック推定方式による回帰平滑化推定量のクラスを提案した。理論的考察により、提案されたセミパラメトリック推定量は、我々が想定したパラメトリックモデルがデータの背後にある構造の少なくともその近傍に構成されている時にはノンパラメトリック推定量、特に従来の核型推定量を優越する事がわかり、その優越の度合いはパラメトリックモデルの持つバイアスにより規定される。また、パラメトリックモデルがバイアスを持つ場合でも、このセミパラメトリック推定量は一致性を持つ事が証明され、ノンパラメトリックな調整項の重要性が確認できた。提案された推定量の良さの尺度としての平均積分2乗誤差をシミュレーションで数値的に評価し、理論的結果を検証した。このように、回帰においても昨年度進行した密度推定の研究で得た結果とほぼ同様の結果を得る事ができ、局所適合セミパラメトリック平滑化の有効性が確認できた。また、密度推定の研究の延長として、提案した推定量のクラスの中で漸近的に最良な推定量を規定する特性量の推定問題についても、推定量の構成アルゴリズムを提案するのと同時に、特性量の一致推定量も構成し、その挙動について調べた。核型推定量を初期推定量として、その残差をノンパラメトリックに調整して得られるフルにノンパラメトリックな密度推定量は縮小バイアスをもつことがわかり、そのような推定量の一般的なクラスを構成し、最良の推定量を導出した。理論的挙動についての結果を導き、有限標本での挙動はシミュレーションで考察した。結果は部分的に、北海道大学での日本統計学会において発表した。

︎全件表示 ︎最初の5件までを表示