研究者詳細

顔写真

マムーデイ ソニア
MAHMOUDI SONIA
Mahmoudi Ep Sato Sonia
所属
高等研究機構材料科学高等研究所 数学連携グループ
職名
助教
学位
  • 博士(理学)(東北大学)

  • M.S.(IMT Mines Ales)

経歴 5

  • 2023年11月 ~ 継続中
    東北大学 東北大学材料科学高等研究所 (SUURI-COOL)

  • 2022年12月 ~ 2023年10月
    東北大学

  • 2022年12月 ~ 2023年10月
    Drexel University and University of Pennsylvania Center of Functional Fabrics Research Assistant Professor

  • 2022年10月 ~ 2022年11月
    東北大学

  • 2019年10月 ~ 2022年9月
    東北大学

学歴 1

  • 東北大学 大学院理学研究科 数学専攻

    2019年10月 ~ 2022年9月

研究キーワード 2

  • 周期タングル

  • 結び目理論

受賞 1

  1. Tohoku University 2022 President's Award

    2023年3月 Tohoku University

論文 7

  1. Diagrammatic representations of 3-periodic entanglements 査読有り

    Toky Andriamanalina, Myfanwy E. Evans, Sonia Mahmoudi

    Topology and its Applications 368 109346-109346 2025年7月

    出版者・発行元: Elsevier BV

    DOI: 10.1016/j.topol.2025.109346  

    ISSN:0166-8641

    詳細を見る 詳細を閉じる

    Diagrams enable the use of various algebraic and geometric tools in analysing and classifying knots. In this paper we introduce a new diagrammatic representation of triply periodic entangled structures, which are embeddings of simple curves in $\mathbb{R}^3$ that are invariant under translations along three non-coplanar axes. These diagrams require an extended set of new moves in addition to the Reidemeister moves, which we show to preserve ambient isotopies of triply periodic entangled structures. We use the diagrams to define the crossing number and the unknotting number of the triply periodic entanglements, demonstrating the practicality of the diagrammatic representation.

  2. On the classification of periodic weaves and universal cover of links in thickened surfaces 査読有り

    Sonia Mahmoudi

    Communications of the Korean Mathematical Society 39 (4) 997-1025 2024年10月31日

    出版者・発行元: arXiv

    DOI: 10.4134/CKMS.C230171  

    詳細を見る 詳細を閉じる

    A periodic weave is the lift of a particular link embedded in a thickened surface to the universal cover. Its components are infinite unknotted simple open curves that can be partitioned in at least two distinct sets of threads. The classification of periodic weaves can be reduced to the one of their generating cells, namely their weaving motifs. However, this classification cannot be achieved through the classical theory of links in thickened surfaces since periodicity in the universal cover is not encoded. In this paper, we first introduce the notion of hyperbolic periodic weaves, which generalizes our doubly periodic weaves embedded in the Euclidean thickened plane. Then, Tait First and Second Conjectures are extended to minimal reduced alternating weaving motifs and proved using a generalized Kauffman bracket polynomial defined for periodic weaving diagrams of the Euclidean plane and generalized to the hyperbolic plane. The first conjecture states that any minimal alternating reduced weaving motif has the minimum possible number of crossings, while the second one formulates that two such oriented weaving motifs have the same writhe.

  3. From Annular to Toroidal Pseudo Knots

    Ioannis Diamantis, Sofia Lambropoulou, Sonia Mahmoudi

    Symmetry 2024年10月13日

    出版者・発行元: arXiv

    DOI: 10.3390/sym16101360  

    詳細を見る 詳細を閉じる

    In this paper, we extend the theory of planar pseudo knots to the theories of annular and toroidal pseudo knots. Pseudo knots are defined as equivalence classes under Reidemeister-like moves of knot diagrams characterized by crossings with undefined over/under information. In the theories of annular and toroidal pseudo knots we introduce their respective lifts to the solid and the thickened torus. Then, we interlink these theories by representing annular and toroidal pseudo knots as planar ${\rm O}$-mixed and ${\rm H}$-mixed pseudo links. We also explore the inclusion relations between planar, annular and toroidal pseudo knots, as well as of ${\rm O}$-mixed and ${\rm H}$-mixed pseudo links. Finally, we extend the planar weighted resolution set to annular and toroidal pseudo knots, defining new invariants for classifying pseudo knots and links in the solid and in the thickened torus.

  4. Directional Invariants of Doubly Periodic Tangles

    Ioannis Diamantis, Sofia Lambropoulou, Sonia Mahmoudi

    Symmetry 2024年7月30日

    DOI: 10.3390/sym16080968  

  5. Equivalence of Doubly Periodic Tangles

    Ioannis Diamantis, Sofia Lambropoulou, Sonia Mahmoudi

    2023年10月

    出版者・発行元: arXiv

    DOI: 10.48550/ARXIV.2310.00822  

    詳細を見る 詳細を閉じる

    Doubly periodic tangles, or \textit{DP tangles}, are embeddings of curves in the thickened plane that are periodically repeated in two directions. They are completely defined by their generating cells, the {\it flat motifs}, which can be chosen in infinitely many ways. DP tangles are used in modelling materials and physical systems of entangled filaments. In this paper we establish the mathematical framework of the topological theory of DP tangles. We first introduce a formal definition of DP tangles as topological objects and proceed with an exhaustive analysis in order to characterize the notion of {\it equivalence} between DP tangles and between their flat motifs. We further generalize our results to other diagrammatic categories, such as framed, virtual, singular, pseudo and bonded DP tangles, which could be used in novel applications.

  6. Construction of weaving and polycatenane motifs from periodic tilings of the plane

    Mizuki Fukuda, Motoko Kotani, Sonia Mahmoudi

    2023年4月5日

    出版者・発行元: arXiv

    DOI: 10.48550/ARXIV.2206.12168  

    詳細を見る 詳細を閉じる

    Doubly periodic weaves and polycatenanes embedded in the thickened Euclidean plane are three-dimensional complex entangled structures whose topological properties can be encoded in any generating cell of its infinite planar representation. Such a periodic cell, called motif, is a specific type of link diagram embedded on a torus consisting of essential simple closed curves for weaves, or null-homotopic for polycatenanes. In this paper, we introduce a methodology to construct such motifs using the concept of polygonal link transformations. This approach generalizes to the Euclidean plane existing methods to construct polyhedral links in the three-dimensional space. Then, we will state our main result which allows one to predict the type of motif that can be built from a given planar periodic tiling and a chosen polygonal link method.

  7. Classification of doubly periodic untwisted (p,q)-weaves by their crossing number and matrices

    Mizuki Fukuda, Motoko Kotani, Sonia Mahmoudi

    Journal of Knot Theory and Its Ramifications 2023年4月5日

    DOI: 10.1142/S0218216523500323  

    詳細を見る 詳細を閉じる

    A weave is the lift to the Euclidean thickened plane of a set of infinitely many planar crossed geodesics, that can be characterized by a number of sets of threads describing the organization of the non-intersecting curves, together with a set of crossing sequences representing the entanglements. In this paper, the classification of a specific class of doubly periodic weaves, called untwisted (p,q)-weaves, is done by their crossing number, which is the minimum number of crossings that can possibly be found in a unit cell of its infinite weaving diagrams. Such a diagram can be considered as a particular type of quadrivalent periodic planar graph with an over or under information at each vertex, whose unit cell corresponds to a link diagram in a thickened torus. Moreover, considering that a weave is not uniquely defined by its sets of threads and its crossing sequences, we also specify the notion of equivalence classes by introducing a new parameter, called crossing matrix.

︎全件表示 ︎最初の5件までを表示

講演・口頭発表等 22

  1. Constructing Periodic Tangles from Tilings 招待有り

    Sonia Mahmoudi

    2025 Spring Symposium, WPI-SKCM2, Hiroshima University 2025年3月

  2. On Doubly Periodic (DP) Tangles & Pseudo DP Tangles 招待有り

    Sonia Mahmoudi

    2024 Winter School, WPI-SKCM2, Hiroshima University 2024年12月

  3. A New Topological Model of Knitting

    Sonia Mahmoudi

    Knitting Day – iTHEMS Math Workshop 2024年11月

  4. Topological Modeling of Textiles Towards a Sustainable Industry

    Sonia Mahmoudi

    Workshop: iTHEMS Science Outreach Workshop 2024, Tohoku University 2024年11月

  5. On the bracket polynomial of periodic tangles

    Sonia Mahmoudi

    Tohoku Knot Seminar 2024年10月

  6. Embedding of weaving motifs in the thickened torus and their periodic covers in the 3-space 招待有り

    Sonia Mahmoudi

    The 4th International Conference on Surfaces, Analysis, and Numerics in Differential Geometry and the 1st IMAG-OCAMI Joint Conference on Differential Geometry 2024年2月

  7. Exploring Periodic Entangled Structures in Materials Science Through Knot Theory 招待有り

    Sonia Mahmoudi

    Kyoto Winter School 2024 “Towards Holistic Understanding of Life”, Kyoto University 2024年2月

  8. Knot Theory in Doubly Periodic Tangles and Applications 招待有り

    Sonia Mahmoudi

    iTHEMS Math Seminar 2024年1月

  9. A Topological Model of Textile Structures

    Sonia Mahmoudi

    ICIAM 2023 Tokyo 2023年8月

  10. Topological Model of Weaves and Links in the Thickened Torus 招待有り

    Sonia Mahmoudi

    Drexel University Math Seminar 2023年6月

  11. Equivalence Classes of Doubly Periodic (p,q)-Weaves 招待有り

    Sonia Mahmoudi

    University of Pennsylvania Math Seminar 2023年4月

  12. Doubly Periodic Weaves & Polycatenanes 招待有り

    Sonia Mahmoudi

    Topology & Computer 2022 2022年10月

  13. Doubly Periodic Weaves & Polycatenanes

    Sonia Mahmoudi

    2022 Annual Meeting of the Japan Society of Applied Mathematics 2022年9月

  14. A Topological Model of Weavings 招待有り

    Sonia Mahmoudi

    The Interdisciplinary World of Tangling, University of Potsdam 2022年9月

  15. Weaving invariants

    Sonia Mahmoudi

    Hokuriku Knot Seminar 2022 2022年9月

  16. Doubly Periodic Entangled Motifs from Planar Tilings

    Sonia Mahmoudi

    Fico González-Acuña Low Dimensional Topology Seminar 2022年8月

  17. Periodic Weaving Diagrams

    Sonia Mahmoudi

    CIRM Workshop: Structures on Surfaces 2022年5月

  18. An Introduction to the Topology of Weaving 招待有り

    Sonia Mahmoudi

    Lounge Seminar, School of Applied Mathematics NTUA Athens 2022年5月

  19. Classification of Combinatorial Weaving Diagrams

    Sonia Mahmoudi

    18th Mathematics Conference for Young Researchers, March 2022年3月

  20. A Topological Model of Weaves

    Sonia Mahmoudi

    CREST Seminar 2022年3月

  21. Construction of Weaving Diagrams from Tilings

    Sonia Mahmoudi

    18th Joint Presentation of the Japan Society for Industrial and Applied Mathematics, 2022年3月

  22. Equivalence classes of doubly periodic untwisted (p,q)-weaves,

    Sonia Mahmoudi

    5th Mathematical Freshman Seminar 2022年2月

︎全件表示 ︎最初の5件までを表示

共同研究・競争的資金等の研究課題 1

  1. 織り構造の構築と分類

    MAHMOUDI Sonia

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research

    研究種目:Grant-in-Aid for JSPS Fellows

    研究機関:Tohoku University

    2022年4月22日 ~ 2024年3月31日