研究者詳細

顔写真

チバ キヨウコ
千葉 杏子
Kyoko Chiba
所属
高等研究機構学際科学フロンティア研究所 新領域創成研究部学際基盤研究分野 生命・環境研究領域
職名
助教
学位
  • 博士(薬科学)(北海道大学)

  • 修士(薬科学)(北海道大学)

e-Rad 研究者番号
10795701

経歴 6

  • 2022年6月 ~ 継続中
    東北大学 プロミネントリサーチフェロー

  • 2021年4月 ~ 継続中
    東北大学 学際科学フロンティア研究所 助教

  • 2021年1月 ~ 2025年3月
    文部科学省卓越研究員

  • 2017年6月 ~ 2021年3月
    カリフォルニア大学デービス校(Richard McKenney 研究室)博士研究員

  • 2017年4月 ~ 2017年5月
    北海道大学薬学部(鈴木利治研究室)博士研究員

  • 2016年4月 ~ 2017年3月
    北海道大学薬学部(鈴木利治研究室)日本学術振興会特別研究員PD

︎全件表示 ︎最初の5件までを表示

学歴 3

  • 北海道大学 大学院生命科学院 生命科学専攻 博士後期課程

    2013年4月 ~ 2016年3月

  • 北海道大学 大学院生命科学院 生命科学専攻 修士課程

    2011年4月 ~ 2013年3月

  • 北海道大学 薬学部 薬科学科

    2007年4月 ~ 2011年3月

研究分野 1

  • ライフサイエンス / 機能生物化学 /

受賞 11

  1. 東北大学優秀女性研究者賞「紫千代萩賞」

    2025年3月

  2. WILEY Top Cited Article 2022-2023

    2024年4月

  3. WILEY Top Downloaded Article 2022

    2024年3月

  4. WILEY Top Cited Article 2021-2022

    2023年2月

  5. 第60回日本生物物理学会 若手招待講演賞

    2022年9月

  6. 第42回日本分子生物学会 海外若手会員招聘企画(トラベルアワード)

    2019年12月

  7. 早石修記念海外留学助成

    2018年6月

  8. 日本生化学会北海道支部 若手奨励賞

    2017年7月

  9. American Society for Cell Biology, International Travel Award

    2016年12月

  10. 北海道大学大塚賞

    2016年3月

  11. 第86回日本生化学会大会 鈴木紘一メモリアル賞

    2013年9月

︎全件表示 ︎最初の5件までを表示

論文 19

  1. The KASH protein UNC-83 differentially regulates kinesin-1 activity to control developmental stage-specific nuclear migration

    Selin Gümüşderelioğlu, Natalie Sahabandu, Daniel Elnatan, Ellen F Gregory, Kyoko Chiba, Shinsuke Niwa, GW Gant Luxton, Richard J. McKenney, Daniel A Starr

    2025年3月7日

    DOI: 10.1101/2025.03.06.641899  

  2. The chromokinesin Kid (KIF22) forms a homodimer, moves processively along microtubules and transports double-strand DNA 査読有り

    Shinsuke Niwa, Natsuki Furusaki, Tomoki Kita, Yuki Suzuki, Kyoko Chiba

    2024年11月19日

    出版者・発行元: eLife Sciences Publications, Ltd

    DOI: 10.7554/elife.102828.1  

    詳細を見る 詳細を閉じる

    During prometaphase in mitosis, chromosomes are pushed toward the spindle equator. The chromokinesin Kid, also known as KIF22, moves chromosomes along spindle microtubules during prometaphase. Kid has long been considered as a monomeric and non-processive motor, different from typical kinesins. In this study, we demonstrate that the full-length Kid forms a homodimer and moves processively along microtubules. A conserved coiled-coil domain within the stalk region of Kid is not only capable of homodimer formation, but is also required for the processivity of Kid. Furthermore, the neck linker and coiled-coil domains of Kid could add processive activity to the motor domain of KIF1A, suggesting that Kid contains a functional neck linker and dimerization capability, a prerequisite for the processivity of kinesin motor domains. The full-length Kid, containing a helix-hairpin-helix domain, can transport double-strand DNA along microtubules in vitro. These findings collectively suggest the reclassification of Kid as a processive motor that transports DNA along microtubules.

  3. Characterizing human KIF1Bß motor activity by single-molecule motility assays and Caenorhabtidis elegans genetics 査読有り

    Rei Iguchi, Tomoki Kita, Taisei Watanabe, Kyoko Chiba, Shinsuke Niwa

    Journal of Cell Science 2024年9月16日

    出版者・発行元: The Company of Biologists

    DOI: 10.1242/jcs.261783  

    ISSN:0021-9533

    eISSN:1477-9137

    詳細を見る 詳細を閉じる

    The axonal transport of synaptic vesicle precursors relies on KIF1A and UNC-104 ortholog motors. In mammals, KIF1Bß is also responsible for the axonal transport of synaptic vesicle precursors. Mutations in KIF1A and KIF1Bß lead to a wide range of neuropathies. While previous studies have revealed the biochemical, biophysical and cell biological properties of KIF1A, and its defects in neurological disorders, the fundamental properties of KIF1Bß remain elusive. In this study, we determined the motile parameters of KIF1Bß through single-molecule motility assays. We find that the C-terminal region of KIF1Bß has an inhibitory role in the motor activity. Alphafold2 prediction suggests that the C-terminal region blocks the motor domain. Additionally, we established simple methods for testing the axonal transport activity of human KIF1Bß using Caenorhabditis elegans genetics. Taking advantage of these methods, we demonstrated that these assays enable the detection of reduced KIF1Bß activities both in vitro and in vivo, that is caused by a Charcot-Marie-Tooth-disease-associated Q98L mutation.

  4. The FHA domain is essential for the autoinhibition of KIF1A/UNC-104 査読有り

    Shinsuke Niwa, Taisei Watanabe, Kyoko Chiba

    Journal of Cell Science 2024年9月6日

    出版者・発行元: The Company of Biologists

    DOI: 10.1242/jcs.262017  

    ISSN:0021-9533

    eISSN:1477-9137

    詳細を見る 詳細を閉じる

    KIF1A/UNC-104, a member of the kinesin superfamily motor proteins, plays a pivotal role in the axonal transport of synaptic vesicles and their precursors. Drosophila melanogaster UNC-104 (DmUNC-104) is a relatively recently discovered Drosophila kinesin. Although some point mutations that disrupt synapse formation have been identified, the biochemical properties of DmUNC-104 protein have not been investigated. Here, we prepared recombinant full-length DmUNC-104 protein and determined its biochemical features. We analyzed the effect of a previously identified missense mutation in the forkhead-associated (FHA) domain, called bristly (bris). The bris mutation strongly promoted the dimerization of DmUNC-104 protein, whereas wild-type DmUNC-104 was a mixture of monomers and dimers. We further tested the G618R mutation near the FHA domain which was previously shown to disrupt the autoinhibition of C. elegans UNC-104. The biochemical properties of the G618R mutant recapitulated those of the bris mutant. Finally, we found that disease-associated mutations also promote the dimerization of DmUNC-104. Collectively, our results suggest that the FHA domain is essential for the autoinhibition of KIF1A/UNC-104, and that abnormal dimerization of KIF1A is linked to human diseases.

  5. Autoinhibition and activation of kinesin-1 and their involvement in amyotrophic lateral sclerosis 招待有り 査読有り

    Kyoko Chiba, Shinsuke Niwa

    Current Opinion in Cell Biology 86 102301-102301 2024年2月

    出版者・発行元: Elsevier BV

    DOI: 10.1016/j.ceb.2023.102301  

    ISSN:0955-0674

  6. Comparative analysis of two Caenorhabditis elegans kinesins KLP-6 and UNC-104 reveals a common and distinct activation mechanism in kinesin-3 査読有り

    Tomoki Kita, Kyoko Chiba, Jiye Wang, Atsushi Nakagawa, Shinsuke Niwa

    eLife 12 2024年1月11日

    出版者・発行元: eLife Sciences Publications, Ltd

    DOI: 10.7554/elife.89040  

    eISSN:2050-084X

    詳細を見る 詳細を閉じる

    Kinesin-3 is a family of microtubule-dependent motor proteins that transport various cargos within the cell. However, the mechanism underlying kinesin-3 activations remains largely elusive. In this study, we compared the biochemical properties of two Caenorhabditis elegans kinesin-3 family proteins, KLP-6 and UNC-104. Both KLP-6 and UNC-104 are predominantly monomeric in solution. As previously shown for UNC-104, non-processive KLP-6 monomer is converted to a processive motor when artificially dimerized. We present evidence that releasing the autoinhibition is sufficient to trigger dimerization of monomeric UNC-104 at nanomolar concentrations, which results in processive movement of UNC-104 on microtubules, although it has long been thought that enrichment in the phospholipid microdomain on cargo vesicles is required for the dimerization and processive movement of UNC-104. In contrast, KLP-6 remains to be a non-processive monomer even when its autoinhibition is unlocked, suggesting a requirement of other factors for full activation. By examining the differences between KLP-6 and UNC-104, we identified a coiled-coil domain called coiled-coil 2 (CC2) that is required for the efficient dimerization and processive movement of UNC-104. Our results suggest a common activation mechanism for kinesin-3 family members, while also highlighting their diversification.

  7. Generation of recombinant and chickenized scFv versions of an anti-kinesin monoclonal antibody H2. 国際誌 査読有り

    Shinsuke Niwa, Kyoko Chiba

    Cytoskeleton 2023年4月10日

    DOI: 10.1002/cm.21756  

    詳細を見る 詳細を閉じる

    Kinesin-1, a motor protein composed of the kinesin heavy chain (KHC) and the kinesin light chain (KLC), is essential for proper cellular morphogenesis and function. A monoclonal antibody (mAb) called H2 recognizes the KHC in a broad range of species and is one of the most widely used mAbs in cytoskeletal motor research. Here, we present vectors that express recombinant H2 in mammalian cells. We show the recombinant H2 performs as well as the hybridoma-derived H2 in both western blotting and immunofluorescence assays. Additionally, the recombinant H2 can detect all three human KHC isotypes (KIF5A, KIF5B, and KIF5C) and amyotrophic lateral sclerosis-associated KIF5A aggregates in cells. In addition, we developed a chickenized version of the H2 mAb's single chain variable fragment, which can be used in immunofluorescence microscopy and expands the potential applications of H2. Overall, our results demonstrate that recombinant H2 is a useful tool for studying the functions of KHCs.

  8. Insight into the regulation of axonal transport from the study of KIF1A-associated neurological disorder 招待有り 査読有り

    Kyoko Chiba, Tomoki Kita, Yuzu Anazawa, Shinsuke Niwa

    Journal of Cell Science 136 (5) 2023年1月19日

    出版者・発行元: The Company of Biologists

    DOI: 10.1242/jcs.260742  

    ISSN:0021-9533

    eISSN:1477-9137

    詳細を見る 詳細を閉じる

    ABSTRACT Neuronal function depends on axonal transport by kinesin superfamily proteins (KIFs). KIF1A is the molecular motor that transports synaptic vesicle precursors, synaptic vesicles, dense core vesicles and active zone precursors. KIF1A is regulated by an autoinhibitory mechanism; many studies, as well as the crystal structure of KIF1A paralogs, support a model whereby autoinhibited KIF1A is monomeric in solution, whereas activated KIF1A is dimeric on microtubules. KIF1A-associated neurological disorder (KAND) is a broad-spectrum neuropathy that is caused by mutations in KIF1A. More than 100 point mutations have been identified in KAND. In vitro assays show that most mutations are loss-of-function mutations that disrupt the motor activity of KIF1A, whereas some mutations disrupt its autoinhibition and abnormally hyperactivate KIF1A. Studies on disease model worms suggests that both loss-of-function and gain-of-function mutations cause KAND by affecting the axonal transport and localization of synaptic vesicles. In this Review, we discuss how the analysis of these mutations by molecular genetics, single-molecule assays and force measurements have helped to reveal the physiological significance of KIF1A function and regulation, and what physical parameters of KIF1A are fundamental to axonal transport.

  9. Synergistic autoinhibition and activation mechanisms control kinesin-1 motor activity. 国際誌 査読有り

    Kyoko Chiba, Kassandra M Ori-McKenney, Shinsuke Niwa, Richard J McKenney

    Cell reports 39 (9) 110900-110900 2022年5月31日

    DOI: 10.1016/j.celrep.2022.110900  

    詳細を見る 詳細を閉じる

    Kinesin-1 activity is regulated by autoinhibition. Intramolecular interactions within the kinesin heavy chain (KHC) are proposed to be one facet of motor regulation. The KHC also binds to the kinesin light chain (KLC), which has been implicated in both autoinhibition and activation of the motor. We show that the KLC inhibits the kinesin-microtubule interaction independently from the proposed intramolecular interaction within KHC. Cargo-adaptor proteins that bind the KLC stimulated processive movement, but the landing rate of activated kinesin complexes remained low. Mitogen-activated protein 7 (MAP7) enhanced motility by increasing the landing rate and run length of the activated kinesin motors. Our results support a model whereby the motor activity of the kinesin is regulated by synergistic inhibition mechanisms and that cargo-adaptor binding to the KLC releases both mechanisms. However, a non-motor MAP is required for robust microtubule association of the activated motor. Thus, human kinesin is regulated by synergistic autoinhibition and activation mechanisms.

  10. An ALS-associated KIF5A mutant forms oligomers and aggregates and induces neuronal toxicity. 国際誌 査読有り

    Juri Nakano, Kyoko Chiba, Shinsuke Niwa

    Genes to cells 27 (6) 421-435 2022年4月17日

    DOI: 10.1111/gtc.12936  

    詳細を見る 詳細を閉じる

    KIF5A is a kinesin superfamily motor protein that transports various cargos in neurons. Mutations in Kif5a cause familial amyotrophic lateral sclerosis (ALS). These ALS mutations are in the intron of Kif5a and induce mis-splicing of KIF5A mRNA, leading to splicing out of exon 27, which in human KIF5A encodes the cargo-binding tail domain of KIF5A. Therefore, it has been suggested that ALS is caused by loss of function of KIF5A. However, the precise mechanisms regarding how mutations in KIF5A cause ALS remain unclear. Here, we show that an ALS-associated mutant of KIF5A, KIF5A(Δexon27), is predisposed to form oligomers and aggregates in cultured mouse cell lines. Interestingly, purified KIF5A(Δexon27) oligomers showed more active movement on microtubules than wild-type KIF5A in vitro. Purified KIF5A(∆exon27) was prone to form aggregates in vitro. Moreover, KIF5A(Δexon27)-expressing Caenorhabditis elegans neurons showed morphological defects. These data collectively suggest that ALS-associated mutations of KIF5A are toxic gain-of-function mutations rather than simple loss-of-function mutations.

  11. A highly conserved 3 10 helix within the kinesin motor domain is critical for kinesin function and human health 国際誌 査読有り

    Aileen J. Lam, Lu Rao, Yuzu Anazawa, Kyoko Okada, Kyoko Chiba, Mariah Dacy, Shinsuke Niwa, Arne Gennerich, Dan W. Nowakowski, Richard J. McKenney

    Science Advances 7 (18) 2021年4月30日

    出版者・発行元: American Association for the Advancement of Science (AAAS)

    DOI: 10.1126/sciadv.abf1002  

    eISSN:2375-2548

    詳細を見る 詳細を閉じる

    An uncharacterized structural element in the kinesin motor domain is shown to be critical for motor function and human health.

  12. Temperature-dependent activity of kinesins is regulable 査読有り

    F. Doval, K. Chiba, R.J. McKenney, K.M. Ori-McKenney, M.D. Vershinin

    Biochemical and Biophysical Research Communications 528 (3) 528-530 2020年7月

    出版者・発行元: Elsevier BV

    DOI: 10.1016/j.bbrc.2020.05.157  

    ISSN:0006-291X

  13. Disease-associated mutations hyperactivate KIF1A motility and anterograde axonal transport of synaptic vesicle precursors 査読有り

    Kyoko Chiba, Hironori Takahashi, Min Chen, Hiroyuki Obinata, Shogo Arai, Koichi Hashimoto, Toshiyuki Oda, Richard J. McKenney, Shinsuke Niwa

    Proceedings of the National Academy of Sciences 116 (37) 18429-18434 2019年9月10日

    出版者・発行元: Proceedings of the National Academy of Sciences

    DOI: 10.1073/pnas.1905690116  

    ISSN:0027-8424

    eISSN:1091-6490

  14. The cytoplasmic region of the amyloid β‐protein precursor ( APP ) is necessary and sufficient for the enhanced fast velocity of APP transport by kinesin‐1 国際誌 査読有り

    Maoko Tsukamoto, Kyoko Chiba, Yuriko Sobu, Yuzuha Shiraki, Yuka Okumura, Saori Hata, Akira Kitamura, Tadashi Nakaya, Seiichi Uchida, Masataka Kinjo, Hidenori Taru, Toshiharu Suzuki

    FEBS Letters 592 (16) 2716-2724 2018年8月

    出版者・発行元: Wiley

    DOI: 10.1002/1873-3468.13204  

    ISSN:0014-5793

    eISSN:1873-3468

    詳細を見る 詳細を閉じる

    Amyloid β-protein precursor (APP) is transported mainly by kinesin-1 and at a higher velocity than other kinesin-1 cargos, such as Alcadein α (Alcα); this is denoted by the enhanced fast velocity (EFV). Interaction of the APP cytoplasmic region with kinesin-1, which is essential for EFV transport, is mediated by JNK-interacting protein 1 (JIP1). To determine the roles of interactions between the APP luminal region and cargo components, we monitored transport of chimeric cargo receptors, Alcα (luminal)-APP (cytoplasmic) and APP (luminal)-Alcα (cytoplasmic). Alcα-APP is transported at the EFV, whereas APP-Alcα is transported at the same velocity as wild-type Alcα. Thus, the cytoplasmic region of APP is necessary and sufficient for the EFV of APP transport by kinesin-1.

  15. Phosphorylation of KLC1 modifies interaction with JIP1 and abolishes the enhanced fast velocity of APP transport by kinesin-1 国際誌 査読有り

    Kyoko Chiba, Ko-yi Chien, Yuriko Sobu, Saori Hata, Shun Kato, Tadashi Nakaya, Yasushi Okada, Angus C. Nairn, Masataka Kinjo, Hidenori Taru, Rong Wang, Toshiharu Suzuki

    Molecular Biology of the Cell 28 (26) 3857-3869 2017年12月15日

    出版者・発行元: American Society for Cell Biology (ASCB)

    DOI: 10.1091/mbc.e17-05-0303  

    ISSN:1059-1524

    eISSN:1939-4586

    詳細を見る 詳細を閉じる

    In neurons, amyloid β-protein precursor (APP) is transported by binding to kinesin-1, mediated by JNK-interacting protein 1b (JIP1b), which generates the enhanced fast velocity (EFV) and efficient high frequency (EHF) of APP anterograde transport. Previously, we showed that EFV requires conventional interaction between the JIP1b C-terminal region and the kinesin light chain 1 (KLC1) tetratricopeptide repeat, whereas EHF requires a novel interaction between the central region of JIP1b and the coiled-coil domain of KLC1. We found that phosphorylatable Thr466 of KLC1 regulates the conventional interaction with JIP1b. Substitution of Glu for Thr466 abolished this interaction and EFV, but did not impair the novel interaction responsible for EHF. Phosphorylation of KLC1 at Thr466 increased in aged brains, and JIP1 binding to kinesin-1 decreased, suggesting that APP transport is impaired by aging. We conclude that phosphorylation of KLC1 at Thr466 regulates the velocity of transport of APP by kinesin-1 by modulating its interaction with JIP1b.

  16. Quantitative analysis of APP axonal transport in neurons: role of JIP1 in enhanced APP anterograde transport. 国際誌 査読有り

    Kyoko Chiba, Masahiko Araseki, Keisuke Nozawa, Keiko Furukori, Yoichi Araki, Takahide Matsushima, Tadashi Nakaya, Saori Hata, Yuhki Saito, Seiichi Uchida, Yasushi Okada, Angus C Nairn, Roger J Davis, Tohru Yamamoto, Masataka Kinjo, Hidenori Taru, Toshiharu Suzuki

    Molecular biology of the cell 25 (22) 3569-80 2014年11月5日

    DOI: 10.1091/mbc.E14-06-1111  

    ISSN:1059-1524

    詳細を見る 詳細を閉じる

    Alzheimer's β-amyloid precursor protein (APP) associates with kinesin-1 via JNK-interacting protein 1 (JIP1); however, the role of JIP1 in APP transport by kinesin-1 in neurons remains unclear. We performed a quantitative analysis to understand the role of JIP1 in APP axonal transport. In JIP1-deficient neurons, we find that both the fast velocity (∼2.7 μm/s) and high frequency (66%) of anterograde transport of APP cargo are impaired to a reduced velocity (∼1.83 μm/s) and a lower frequency (45%). We identified two novel elements linked to JIP1 function, located in the central region of JIP1b, that interact with the coiled-coil domain of kinesin light chain 1 (KLC1), in addition to the conventional interaction of the JIP1b 11-amino acid C-terminal (C11) region with the tetratricopeptide repeat of KLC1. High frequency of APP anterograde transport is dependent on one of the novel elements in JIP1b. Fast velocity of APP cargo transport requires the C11 domain, which is regulated by the second novel region of JIP1b. Furthermore, efficient APP axonal transport is not influenced by phosphorylation of APP at Thr-668, a site known to be phosphorylated by JNK. Our quantitative analysis indicates that enhanced fast-velocity and efficient high-frequency APP anterograde transport observed in neurons are mediated by novel roles of JIP1b.

  17. Simple and Direct Assembly of Kymographs from Movies Using KYMOMAKER 査読有り

    Kyoko Chiba, Yuki Shimada, Masataka Kinjo, Toshiharu Suzuki, Seiich Uchida

    Traffic 15 (1) 1-11 2014年1月

    出版者・発行元: Wiley

    DOI: 10.1111/tra.12127  

    ISSN:1398-9219

  18. Phosphorylation of multiple sites within an acidic region of Alcadein α is required for kinesin-1 association and Golgi exit of Alcadein α cargo 国際誌 査読有り

    Yuriko Sobu, Keiko Furukori, Kyoko Chiba, Angus C. Nairn, Masataka Kinjo, Saori Hata, Toshiharu Suzuki

    Molecular Biology of the Cell 28 (26) 3844-3856 2017年12月15日

    出版者・発行元: American Society for Cell Biology (ASCB)

    DOI: 10.1091/mbc.e17-05-0301  

    ISSN:1059-1524

    eISSN:1939-4586

    詳細を見る 詳細を閉じる

    Alcadein α (Alcα) is a major cargo of kinesin-1 that is subjected to anterograde transport in neuronal axons. Two tryptophan- and aspartic acid-containing (WD) motifs located in its cytoplasmic domain directly bind the tetratricopeptide repeat (TPR) motifs of the kinesin light chain (KLC), which activate kinesin-1 and recruit kinesin-1 to Alcα cargo. We found that phosphorylation of three serine residues in the acidic region located between the two WD motifs is required for interaction with KLC. Phosphorylation of these serine residues may alter the disordered structure of the acidic region to induce direct association with KLC. Replacement of these serines with Ala results in a mutant that is unable to bind kinesin-1, which impairs exit of Alcα cargo from the Golgi. Despite this deficiency, the compromised Alcα mutant was still transported, albeit improperly by vesicles following missorting of the Alcα mutant with amyloid β-protein precursor (APP) cargo. This suggests that APP partially compensates for defective Alcα in anterograde transport by providing an alternative cargo receptor for kinesin-1.

  19. Facilitation of brain mitochondrial activity by 5-aminolevulinic acid in a mouse model of Alzheimer's disease. 国際誌 査読有り

    Chiori Omori, Rika Motodate, Yuzuha Shiraki, Kyoko Chiba, Yuriko Sobu, Ayano Kimura, Tadashi Nakaya, Hikaru Kondo, Satoshi Kurumiya, Toru Tanaka, Kazuo Yamamoto, Motowo Nakajima, Toshiharu Suzuki, Saori Hata

    Nutritional neuroscience 20 (9) 538-546 2017年11月

    DOI: 10.1080/1028415X.2016.1199114  

    ISSN:1028-415X

    eISSN:1476-8305

︎全件表示 ︎最初の5件までを表示

講演・口頭発表等 18

  1. Cell Biological and Biophysical Characterization of ALS-Associated KIF5A Mutant 国際会議 招待有り

    Kyoko Chiba

    KSMCB 2025 (International Conference of Korean Society for Molecular and Cellular Biology) 2025年9月30日

  2. キネシンモータータンパク質の機能異常と神経変性疾患 招待有り

    千葉杏子

    第七回 三融会・武田神経科学シンポジウム 2025年4月20日

  3. Biochemical and Biophysical Analysis of ALS-associated KIF5A mutant 国際会議 招待有り

    千葉杏子

    Biophysical Society 69th Annual Meeting「BPS2025」 Motility & Cytoskeleton Subgroup Symposium 2025年2月15日

  4. Kinesin-3 の分子内相互作用と自己阻害 招待有り

    千葉杏子

    第12回分子モーター討論会 2023年9月28日

  5. KIF5A のALS 関連遺伝子変異はKIF5A のオリゴマー化と凝集を促進し神経毒性を引き起こす 招待有り

    千葉杏子

    第60回日本生物物理学会 2022年9月28日

  6. In Vitro Reconstitution of Kinesin-1 Activation 招待有り

    千葉杏子

    第59回日本生物物理学会 Japan-US symposium on cytoskeletal motor proteins and their associated proteins 2021年11月25日

  7. Aggregation-Inducing Region of ALS-Associated KIF5A Mutant 国際会議

    2024 ASCB Annual Meeting「Cell Bio 2024」 2024年12月16日

  8. Molecular mechanisms of the ALS-associated KIF5A aggregation 国際会議

    千葉杏子

    EMBO・COB ワークショップ「Axonal Degeneration and Regeneration」 2024年10月9日

  9. UNC-104 の自己阻害と2量体化

    第13回 分子モーター討論会 2024年9月30日

  10. Molecular mechanisms of the ALS-associated KIF5A aggregation 国際会議

    千葉杏子

    ゴードンカンファレンス「Cytoskeletal Motors」 2024年7月8日

  11. The prominent role of the FHA domain in the autoinhibition of KIF1A/UNC-104 国際会議

    千葉杏子

    EMBO・EMBLシンポジウム「Microtubules: from atoms to complex systems」 2024年6月7日

  12. The FHA domain is essential for the autoinhibition of KIF1A 国際会議

    Kyoko Chiba, Shinsuke Niwa

    2023 ASCB Annual Meeting 「Cell Bio 2023」 2023年12月5日

  13. KIF1A and KIF1Bβ form a heterodimer 国際会議

    Kyoko CHIBA, Shinsuke NIWA

    第49回内藤コンファレンス「Frontiers of Microtubule and Its-Related Motors - Atomic Structures, Cellular Functions, Development and Diseases - 」 2023年7月5日

  14. An ALS-associated KIF5A mutant forms oligomers and aggregates and induces neuronal toxicity

    Kyoko Chiba, Juri Nakano, Shinsuke Niwa

    2022 ASCB Annual Meeting「Cell Bio 2022」 2022年12月6日

  15. In vitro reconstitution of a coordinated Kinesin-1 activation

    千葉杏子

    第22回日本蛋白質科学会 2022年6月9日

  16. MAP7とNesprin-4の協調によるKinesin-1活性化

    千葉杏子

    第44回日本分子生物学会年会 2021年12月1日

  17. Disease-associated mutations in human KIF1A overactivate motility of KIF1A and anterograde axonal transport of synaptic vesicle precursors

    千葉杏子

    第42回日本分子生物学会 2019年12月5日

  18. Single molecule analysis of the Kinesin activation

    千葉杏子

    東北大学国際交流セミナー 2019年11月29日

︎全件表示 ︎最初の5件までを表示