Details of the Researcher

PHOTO

Tomo Miyazaki
Section
Graduate School of Engineering
Job title
Associate Professor
Degree
  • 博士(工学)(東北大学)

  • 修士(工学)(東北大学)

Research History 4

  • 2024/05 - Present
    Tohoku University Associate Professor

  • 2015/04 - 2024/04
    東北大学 Assitant Professor

  • 2013/01 - 2015/03
    東北大学 Researcher

  • 2011/04 - 2012/12
    (株)日立製作所ディフェンスシステム社

Education 2

  • Tohoku University Graduate School, Division of Engineering Electrical and Communication Engineering

    - 2011/03/25

  • Yamagata University Faculty of Engineering 情報科学科

    - 2006/03/25

Committee Memberships 2

  • 画像工学研究会 専門委員

    2019/06 - 2023/06

  • パターン認識・メディア理解研究会 専門委員

    2015/06 - 2021/06

Professional Memberships 2

  • IEEE

  • 電子情報通信学会

Research Interests 3

  • Document Analysis

  • image processing

  • Pattern recognition

Research Areas 1

  • Informatics / Perceptual information processing /

Awards 6

  1. インタラクティブ発表賞

    2024/08 Domain Generalizable Multi-Targeted Adversarial Attack using Dynamic Loss Weighting

  2. インタラクティブ発表賞

    2024/08 第27回 画像の認識・理解シンポジウム 生成画像を用いた工業画像マルチクラス分類と異常検知アルゴリズム性能との比較検証

  3. 石田實記念財団研究奨励賞

    2021/11 一般財団法人石田實記念財団

  4. The Eighth International Conferences on Pervasive Patterns and Applications, Best Paper Award

    2016/03/22 The Eighth International Conferences on Pervasive Patterns and Applications

  5. The Eighth International Conferences on Creative Content Technologies, Best Paper Award

    2016/03/22 The Eighth International Conference on Creative Content Technologies

  6. IEEE Sendai Section, The Best Paper Prize

    2007/12/07 IEEE Sendai Section

Show all ︎Show 5

Papers 86

  1. Semantically-Guided Image Compression for Enhanced Perceptual Quality at Extremely Low Bitrates Peer-reviewed

    Shoma Iwai, Tomo Miyazaki, Shinichiro Omachi

    IEEE Access 12 100057-100072 2024

    Publisher: Institute of Electrical and Electronics Engineers (IEEE)

    DOI: 10.1109/access.2024.3430322  

    eISSN: 2169-3536

  2. Japanese historical character recognition by focusing on character parts

    Takuru Ishikawa, Tomo Miyazaki, Shinichiro Omachi

    Pattern Recognition 110181-110181 2023/12

    Publisher: Elsevier BV

    DOI: 10.1016/j.patcog.2023.110181  

    ISSN: 0031-3203

  3. A Scene-Text Synthesis Engine Achieved Through Learning from Decomposed Real-World Data International-journal Peer-reviewed

    Zhengmi Tang, Tomo Miyazaki, Shinichiro Omachi

    IEEE Transactions on Image Processing 2023/11

    DOI: 10.1109/TIP.2023.3326685  

  4. Deep Image Compression Using Scene Text Quality Assessment Peer-reviewed

    Shohei Uchigasaki, Tomo Miyazaki, Shinichiro Omachi

    Pattern Recognition 109696-109696 2023/05

    Publisher: Elsevier BV

    DOI: 10.1016/j.patcog.2023.109696  

    ISSN: 0031-3203

  5. Important Region Estimation Using Image Captioning Peer-reviewed

    Taku Suzuki, Daisuke Sato, Yoshihiro Sugaya, Tomo Miyazaki, Shinichiro Omachi

    IEEE Access 10 105546-105555 2022/10

    Publisher: Institute of Electrical and Electronics Engineers (IEEE)

    DOI: 10.1109/access.2022.3211260  

    eISSN: 2169-3536

  6. Stroke-Based Scene Text Erasing Using Synthetic Data for Training International-journal Peer-reviewed

    Zhengmi Tang, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    IEEE Transactions on Image Processing 30 9306-9320 2021/11

    Publisher: Institute of Electrical and Electronics Engineers (IEEE)

    DOI: 10.1109/tip.2021.3125260  

    ISSN: 1057-7149

    eISSN: 1941-0042

  7. A Framework for Estimating Gaze Point Information for Location-Based Services Peer-reviewed

    Junpei Masuho, Tomo Miyazaki, Yoshihiro Sugaya, Masako Omachi, Shinichiro Omachi

    IEEE Transactions on Vehicular Technology 70 (9) 8468-8477 2021/09

    Publisher: Institute of Electrical and Electronics Engineers (IEEE)

    DOI: 10.1109/tvt.2021.3101932  

    ISSN: 0018-9545

    eISSN: 1939-9359

  8. Graph Neural Networks with Multiple Feature Extraction Paths for Chemical Property Estimation International-journal Peer-reviewed

    Sho Ishida, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    Molecules 26 (11) 3125-3125 2021/05/24

    Publisher: MDPI AG

    DOI: 10.3390/molecules26113125  

    eISSN: 1420-3049

    More details Close

    Feature extraction is essential for chemical property estimation of molecules using machine learning. Recently, graph neural networks have attracted attention for feature extraction from molecules. However, existing methods focus only on specific structural information, such as node relationship. In this paper, we propose a novel graph convolutional neural network that performs feature extraction with simultaneously considering multiple structures. Specifically, we propose feature extraction paths specialized in node, edge, and three-dimensional structures. Moreover, we propose an attention mechanism to aggregate the features extracted by the paths. The attention aggregation enables us to select useful features dynamically. The experimental results showed that the proposed method outperformed previous methods.

  9. Automatic Generation of Typographic Font From Small Font Subset International-journal Peer-reviewed

    Tomo Miyazaki, Tatsunori Tsuchiya, Yoshihiro Sugaya, Shinichiro Omachi, Masakazu Iwamura, Seiichi Uchida, Koichi Kise

    IEEE Computer Graphics and Applications 40 (1) 99-111 2020/01/01

    Publisher: Institute of Electrical and Electronics Engineers (IEEE)

    DOI: 10.1109/mcg.2019.2931431  

    ISSN: 0272-1716

    eISSN: 1558-1756

  10. Object-Based Video Coding by Visual Saliency and Temporal Correlation International-journal Peer-reviewed

    Kazuya Ogasawara, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    IEEE Transactions on Emerging Topics in Computing 8 (1) 168-178 2020/01/01

    Publisher: Institute of Electrical and Electronics Engineers (IEEE)

    DOI: 10.1109/tetc.2017.2695640  

    eISSN: 2376-4562

  11. Automatic Mackerel Sorting Machine using Global and Local Features International-journal Peer-reviewed

    Yoshito Nagaoka, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    IEEE Access 7 (1) 63767-63777 2019/12

    DOI: 10.1109/ACCESS.2019.2917554  

  12. Structural Data Recognition With Graph Model Boosting International-journal Peer-reviewed

    Tomo Miyazaki, Shinichiro Omachi

    IEEE Access 6 63606-63618 2018

    Publisher: Institute of Electrical and Electronics Engineers (IEEE)

    DOI: 10.1109/access.2018.2876860  

    eISSN: 2169-3536

  13. VQ-STE: Scene text erasing with mask refinement and vector-quantized texture dictionary

    Zhengmi Tang, Tomo Miyazaki, Zhijie Wang, Yongsong Huang, Jonathan Pradana Mailoa, Shinichiro Omachi

    Knowledge-Based Systems 315 113306-113306 2025/04

    Publisher: Elsevier BV

    DOI: 10.1016/j.knosys.2025.113306  

    ISSN: 0950-7051

  14. Texture and noise dual adaptation for infrared image super-resolution

    Yongsong Huang, Tomo Miyazaki, Xiaofeng Liu, Yafei Dong, Shinichiro Omachi

    Pattern Recognition 111449-111449 2025/02

    Publisher: Elsevier BV

    DOI: 10.1016/j.patcog.2025.111449  

    ISSN: 0031-3203

  15. Dual-Conditioned Training to Exploit Pre-Trained Codebook-Based Generative Model in Image Compression International-journal Peer-reviewed

    Shoma Iwai, Tomo Miyazaki, Shinichiro Omachi

    IEEE Access 12 198184-198200 2024/12

    DOI: 10.1109/ACCESS.2024.3522238  

  16. Lightweight Reference-Based Video Super-Resolution Using Deformable Convolution

    Tomo Miyazaki, Zirui Guo, Shinichiro Omachi

    Information 15 (11) 718-718 2024/11/08

    Publisher: MDPI AG

    DOI: 10.3390/info15110718  

    eISSN: 2078-2489

    More details Close

    Super-resolution is a technique for generating a high-resolution image or video from a low-resolution counterpart by predicting natural and realistic texture information. It has various applications such as medical image analysis, surveillance, remote sensing, etc. However, traditional single-image super-resolution methods can lead to a blurry visual effect. Reference-based super-resolution methods have been proposed to recover detailed information accurately. In reference-based methods, a high-resolution image is also used as a reference in addition to the low-resolution input image. Reference-based methods aim at transferring high-resolution textures from the reference image to produce visually pleasing results. However, it requires texture alignment between low-resolution and reference images, which generally requires a lot of time and memory. This paper proposes a lightweight reference-based video super-resolution method using deformable convolution. The proposed method makes the reference-based super-resolution a technology that can be easily used even in environments with limited computational resources. To verify the effectiveness of the proposed method, we conducted experiments to compare the proposed method with baseline methods in two aspects: runtime and memory usage, in addition to accuracy. The experimental results showed that the proposed method restored a high-quality super-resolved image from a very low-resolution level in 0.0138 s using two NVIDIA RTX 2080 GPUs, much faster than the representative method.

  17. TAMC: Textual Alignment and Masked Consistency for Open-Vocabulary 3D Scene Understanding Peer-reviewed

    Juan Wang, Zhijie Wang, Tomo Miyazaki, Yaohou Fan, Shinichiro Omachi

    Sensors 24 (19) 6166-6166 2024/09/24

    Publisher: MDPI AG

    DOI: 10.3390/s24196166  

    eISSN: 1424-8220

    More details Close

    Three-dimensional (3D) Scene Understanding achieves environmental perception by extracting and analyzing point cloud data with wide applications including virtual reality, robotics, etc. Previous methods align the 2D image feature from a pre-trained CLIP model and the 3D point cloud feature for the open vocabulary scene understanding ability. We believe that existing methods have the following two deficiencies: (1) the 3D feature extraction process ignores the challenges of real scenarios, i.e., point cloud data are very sparse and even incomplete; (2) the training stage lacks direct text supervision, leading to inconsistency with the inference stage. To address the first issue, we employ a Masked Consistency training policy. Specifically, during the alignment of 3D and 2D features, we mask some 3D features to force the model to understand the entire scene using only partial 3D features. For the second issue, we generate pseudo-text labels and align them with the 3D features during the training process. In particular, we first generate a description for each 2D image belonging to the same 3D scene and then use a summarization model to fuse these descriptions into a single description of the scene. Subsequently, we align 2D-3D features and 3D-text features simultaneously during training. Massive experiments demonstrate the effectiveness of our method, outperforming state-of-the-art approaches.

  18. Machine learning-based identification of the risk factors for postoperative nausea and vomiting in adults Peer-reviewed

    Hiroshi Hoshijima, Tomo Miyazaki, Yuto Mitsui, Shinichiro Omachi, Masanori Yamauchi, Kentaro Mizuta

    PLOS ONE 19 (8) 1-15 2024/08/15

    Publisher: Public Library of Science (PLoS)

    DOI: 10.1371/journal.pone.0308755  

    eISSN: 1932-6203

    More details Close

    Postoperative nausea and vomiting (PONV) is a common adverse effect of anesthesia. Identifying risk factors for PONV is crucial because it is associated with a longer stay in the post-anesthesia care unit, readmissions, and perioperative costs. This retrospective study used artificial intelligence to analyze data of 37,548 adult patients (aged ≥20 years) who underwent surgery under general anesthesia at Tohoku University Hospital from January 1, 2010 to December 31, 2019. To evaluate PONV, patients who experienced nausea and/or vomiting or used antiemetics within 24 hours after surgery were extracted from postoperative medical and nursing records. We create a model that predicts probability of PONV using the gradient tree boosting model, which is a widely used machine learning algorithm in many applications due to its efficiency and accuracy. The model implementation used the LightGBM framework. Data were available for 33,676 patients. Total blood loss was identified as the strongest contributor to PONV, followed by sex, total infusion volume, and patient’s age. Other identified risk factors were duration of surgery (60–400 min), no blood transfusion, use of desflurane for maintenance of anesthesia, laparoscopic surgery, lateral positioning during surgery, propofol not used for maintenance of anesthesia, and epidural anesthesia at the lumbar level. The duration of anesthesia and the use of either sevoflurane or fentanyl were not identified as risk factors for PONV. We used artificial intelligence to evaluate the extent to which risk factors for PONV contribute to the development of PONV. Intraoperative total blood loss was identified as the potential risk factor most strongly associated with PONV, although it may correlate with duration of surgery, and insufficient circulating blood volume. The use of sevoflurane and fentanyl and the anesthesia time were not identified as risk factors for PONV in this study.

  19. Learn from orientation prior for radiograph super-resolution: Orientation operator transformer International-journal International-coauthorship Peer-reviewed

    Yongsong Huang, Tomo Miyazaki, Xiaofeng Liu, Kaiyuan Jiang, Zhengmi Tang, Shinichiro Omachi

    Computer Methods and Programs in Biomedicine 245 2024/03

    DOI: 10.1016/j.cmpb.2023.108000  

  20. IRSRMamba: Infrared Image Super-Resolution via Mamba-based Wavelet Transform Feature Modulation Model.

    Yongsong Huang, Tomo Miyazaki, Xiaofeng Liu 0001, Shinichiro Omachi

    CoRR abs/2405.09873 2024

    DOI: 10.48550/arXiv.2405.09873  

  21. JPEG Image Enhancement with Pre-Processing of Color Reduction and Smoothing International-journal Peer-reviewed

    Akane Shoda, Tomo Miyazaki, Shinichiro Omachi

    Sensors 23 (21) 2023/10

    DOI: 10.3390/s23218861  

  22. Collaborative Indoor Positioning by Localization Comparison at an Encounter Position International-journal Peer-reviewed

    Kohei Kageyama, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    Applied Sciences 13 (12) 2023/06

    DOI: 10.3390/app13126962  

  23. Target-oriented Domain Adaptation for Infrared Image Super-Resolution.

    Yongsong Huang, Tomo Miyazaki, Xiaofeng Liu, Yafei Dong, Shinichiro Omachi

    CoRR abs/2311.08816 2023

    DOI: 10.48550/arXiv.2311.08816  

  24. Comparative Pulse Shape Discrimination Study for Ca(Br, I)2 Scintillators Using Machine Learning and Conventional Methods Peer-reviewed

    M. Yoshino, T. Iida, K. Mizukoshi, T. Miyazaki, K. Kamada, K.J. Kim, A. Yoshikawa

    Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1045 167626-167626 2023/01

    Publisher: Elsevier BV

    DOI: 10.1016/j.nima.2022.167626  

    ISSN: 0168-9002

  25. GAN-based Privacy-Conscious Data Augmentation with Finger-Vein Images Peer-reviewed

    Yusuke Matsuda, Tomo Miyazaki, Shinichiro Omachi

    2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET) 2022/09/13

    Publisher: IEEE

    DOI: 10.1109/iicaiet55139.2022.9936860  

  26. Infrared Image Super-Resolution: Systematic Review, and Future Trends.

    Yongsong Huang, Tomo Miyazaki, Xiaofeng Liu, Shinichiro Omachi

    CoRR abs/2212.12322 2022

    DOI: 10.48550/arXiv.2212.12322  

  27. Importance Estimation for Scene Texts Using Visual Features Peer-reviewed

    Kota OODAIRA, Tomo MIYAZAKI, Yoshihiro SUGAYA, Shinichiro OMACHI

    Interdisciplinary Information Sciences 28 (1) 15-23 2022

    Publisher: Graduate School of Information Sciences, Tohoku University

    DOI: 10.4036/iis.2022.a.06  

    ISSN: 1340-9050

    eISSN: 1347-6157

  28. Self Texture Transfer Networks for Low Bitrate Image Compression Peer-reviewed

    Shoma Iwai, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2021/06

    DOI: 10.1109/CVPRW53098.2021.00214  

  29. Multiple Visual-Semantic Embedding for Video Retrieval from Query Sentence International-journal Peer-reviewed

    Huy Manh Nguyen, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    Applied Sciences 11 (7) 3214-3214 2021/04/03

    Publisher: MDPI AG

    DOI: 10.3390/app11073214  

    eISSN: 2076-3417

    More details Close

    Visual-semantic embedding aims to learn a joint embedding space where related video and sentence instances are located close to each other. Most existing methods put instances in a single embedding space. However, they struggle to embed instances due to the difficulty of matching visual dynamics in videos to textual features in sentences. A single space is not enough to accommodate various videos and sentences. In this paper, we propose a novel framework that maps instances into multiple individual embedding spaces so that we can capture multiple relationships between instances, leading to compelling video retrieval. We propose to produce a final similarity between instances by fusing similarities measured in each embedding space using a weighted sum strategy. We determine the weights according to a sentence. Therefore, we can flexibly emphasize an embedding space. We conducted sentence-to-video retrieval experiments on a benchmark dataset. The proposed method achieved superior performance, and the results are competitive to state-of-the-art methods. These experimental results demonstrated the effectiveness of the proposed multiple embedding approach compared to existing methods.

  30. Text Detection Using Multi-Stage Region Proposal Network Sensitive to Text Scale International-journal Peer-reviewed

    Yoshito Nagaoka, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    Sensors 21 (4) 1232-1232 2021/02/09

    Publisher: MDPI AG

    DOI: 10.3390/s21041232  

    eISSN: 1424-8220

    More details Close

    Recently, attention has surged concerning intelligent sensors using text detection. However, there are challenges in detecting small texts. To solve this problem, we propose a novel text detection CNN (convolutional neural network) architecture sensitive to text scale. We extract multi-resolution feature maps in multi-stage convolution layers that have been employed to prevent losing information and maintain the feature size. In addition, we developed the CNN considering the receptive field size to generate proposal stages. The experimental results show the importance of the receptive field size.

  31. Fidelity-Controllable Extreme Image Compression with Generative Adversarial Networks Peer-reviewed

    Shoma Iwai, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    Proceedings of the 25th International Conference on Pattern Recognition (ICPR 2020) 8235-8242 2021/01

    DOI: 10.1109/ICPR48806.2021.9412185  

  32. Mackerel Fat Content Estimation Using RGB and Depth Images

    Shuya Sano, Tomo Miyazaki, Yoshihiro Sugaya, Naohiro Sekiguchi, Shinichiro Omachi

    IEEE Access 9 164060-164069 2021

    Publisher: Institute of Electrical and Electronics Engineers (IEEE)

    DOI: 10.1109/access.2021.3134260  

    eISSN: 2169-3536

  33. Optical Flow-Based Fast Motion Parameters Estimation for Affine Motion Compensation International-journal Peer-reviewed

    Antoine Chauvet, Yoshihiro Sugaya, Tomo Miyazaki, Shinichiro Omachi

    Appllied Sciences 10 (2) 2020/01

    DOI: 10.3390/app10020729  

  34. Super Resolution for Multi Frames with 3D Feature Extraction and RNN Prediction Peer-reviewed

    Xi Huang, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    2019 International Symposium on Signal Processing Systems Proceedings (SSPS 2019) 2019/09

    DOI: 10.1145/3364908.3364909  

  35. Fast Image Quality Enhancement for HEVC by Postfiltering via Shallow Neural Networks Peer-reviewed

    Antoine Chauvet, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    IIEEJ Transactions on Image Electronics and Visual Computing 7 (1) 2-12 2019/06

  36. A Development of Wearable System for Information Providing Applications Using Scene Text Recognition Peer-reviewed

    Yoshihiro Sugaya, Kiyoshiro Sakai, Tomo Miyazaki, Shinichiro Omachi

    The Journal of the Institute of Image Electronics Engineers of Japan 48 (2) 248-257 2019/04

  37. Text Detection by Faster R-CNN with Multiple Region Proposal Networks Peer-reviewed

    Yoshito Nagaoka, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    Proceedings of the International Conference on Document Analysis and Recognition, ICDAR 6 15-20 2018/01/25

    Publisher: IEEE Computer Society

    DOI: 10.1109/ICDAR.2017.343  

    ISSN: 1520-5363

  38. Glyph-Based Data Augmentation for Accurate Kanji Character Recognition Peer-reviewed

    Kenichiro Ofusa, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    Proceedings of the International Conference on Document Analysis and Recognition, ICDAR 1 597-602 2018/01/25

    Publisher: IEEE Computer Society

    DOI: 10.1109/ICDAR.2017.103  

    ISSN: 1520-5363

  39. Mackerel Classification using Global and Local Features Peer-reviewed

    Yoshito Nagaoka, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation 1209-1212 2018

  40. Activity Recognition Using Gazed Text and Viewpoint Information for User Support Systems Peer-reviewed

    Shun Chiba, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    Journal of Sensor and Actuator Networks 7 (3) 2018

    DOI: 10.3390/jsan7030031  

  41. Automatic Discrimination between Scomber japonicus and Scomber australasicus by Geometric and Texture Features Peer-reviewed

    Airi Kitasato, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    Fishes 3 (3) 2018

    DOI: 10.3390/fishes3030026  

  42. Text retrieval for Japanese historical documents by image generation Peer-reviewed

    Chisato Sugawara, Yoshihiro Sugaya, Tomo Miyazaki, Shinichiro Omachi

    ACM International Conference Proceeding Series 19-24 2017/11/10

    Publisher: Association for Computing Machinery

    DOI: 10.1145/3151509.3151512  

  43. A Preliminary Study on Location Estimation without Preparation using Ceiling Signboard Peer-reviewed

    Yoshihiro Sugaya, Kento Takeda, Tomo Miyazaki, Shinichiro Omachi

    Proceedings of International Conference on Indoor Positioning and Indoor Navigation 2017/09

  44. Adaptive Post Filter for Reducing Block Artifacts in High Efficiency Video Coding Peer-reviewed

    Antoine Chauvet, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    Proceedings - 2016 International Conference on Multimedia Systems and Signal Processing, ICMSSP 2016 22-25 2017/06/09

    Publisher: Institute of Electrical and Electronics Engineers Inc.

    DOI: 10.1109/ICMSSP.2016.014  

  45. Development of Wearable System for Translation of Japanese Texts in the Environment Peer-reviewed

    Kiyoshiro Sakai, Yoshihiro Sugaya, Tomo Miyazaki, Shinichiro Omachi

    Proceedings of International Workshop on Frontiers of Computer Vison 2017/02

  46. Analysis of Floor Map Image in Information Board for Indoor Navigation Peer-reviewed

    Tomoya Honto, Yoshihiro Sugaya, Tomo Miyazaki, Shinichiro Omachi

    2017 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN) 2017

    DOI: 10.1109/IPIN.2017.8115896  

    ISSN: 2162-7347

  47. Efficient coding for video including text using image generation Peer-reviewed

    Yosuke Nozue, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    Journal of Information Processing 24 (2) 330-338 2016/03/15

    Publisher: Information Processing Society of Japan

    DOI: 10.2197/ipsjjip.24.330  

    ISSN: 1882-6652 0387-5806

  48. Indoor Localization by Map Matching Using One Image of Guide Plate Peer-reviewed

    Kento Tonosaki, Yoshihiro Sugaya, Tomo Miyazaki, Shinichiro Omachi

    The Eighth International Conferences on Pervasive Patterns and Applications (PATTERNS 2016) 2016/03

  49. Indoor Localization by Map Matching Using One Image of Information Board Peer-reviewed

    Kento Tonosaki, Toshihiro Sugaya, Tomo Miyazaki, Shinichiro Omachi

    The Eighth International Conferences on Pervasive Patterns and Applications 2016/03

  50. Object-based Video Coding for Arbitrary Shape by Visual Saliency and Temporal Correlation Peer-reviewed

    Kazuya Ogasawara, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    The Eighth International Conference on Creative Content Technologies 2016/03

  51. Discrimination of Scomber Japonicus and Scomber Australasicus by Dorsal Fin Length and Fork Length Peer-reviewed

    Airi Kitasato, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    The Korea-Japan joint workshop on Frontiers of Computer Vision 2016 338-341 2016/02

  52. Precise Character Region Extraction from Scene Images Using Auxiliary Lines Peer-reviewed

    Shiori KAWAMURA, Tomo MIYAZAKI, Yoshihiro SUGAYA, Shinichiro OMACHI

    The Journal of the Institute of Image Electronics Engineers of Japan 45 (1) 62-70 2016/02

    Publisher: The Institute of Image Electronics Engineers of Japan

    DOI: 10.11371/iieej.45.62  

    ISSN: 2186-716X

    More details Close

    The demand for character recognition in scene images has been growing. However, complex background, non-uniform illumination conditions and shadows are main obstacles for accurate detection and recognition of characters in scene images. For accurate detection, some methods that utilize a supplementary information given by a user with a touch operation using a device such as smart phones or tablets have been proposed. Based on this idea, in this paper, we propose a method for detecting character regions in scene image using auxiliary information given by a user. In the proposed method, the user will designate rough positions of characters in the image by an auxiliary lines and character regions are extracted based on the information. The effectiveness of the proposed method is experimentally evaluated with a public database. It achieves better result for character region extraction if the characters are with complex background and uneven brightness.

  53. Precise character region extraction from scene images using auxiliary lines

    Shiori Kawamura, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    Journal of the Institute of Image Electronics Engineers of Japan 45 (1) 62-70 2016

    Publisher: Institute of Image Electronics Engineers of Japan

    ISSN: 1348-0316 0285-9831

  54. The Journal of the Institute of Image Electronics Engineers of Japan Peer-reviewed

    Siori KAWAMURA, Tomo MIYAZAKI, Yoshihiro SUGAYA, Shinichiro OMACHI

    画像電子学会誌 45 (1) 62-70 2016/01

  55. スパースコーディングを用いたテキストを含む画像符号化に関する検討

    井上 慶祐, 宮崎 智, 菅谷 至寛, 大町 真一郎

    電子情報通信学会技術研究報告 116 (119) 5-10 2016

  56. Improvement of Map Matching for Indoor Navigation Exploiting Photo of Information Board Peer-reviewed

    Kento Tonosaki, Yoshihiro Sugaya, Tomo Miyazaki, Shinichiro Omachi

    Proceedings of International Conference on Indoor Positioning and Indoor Navigation 22-26 2016

  57. Graph Model Boosting for Structural Data Recognition Peer-reviewed

    Tomo Miyazaki, Shinichiro Omachi

    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) 1707-1712 2016

    DOI: 10.1109/ICPR.2016.7899882  

    ISSN: 1051-4651

  58. 顕著性マップとGrabCutによる注目物体抽出を用いた動画像符号化

    小笠原和也, 宮崎 智, 菅谷至寛, 大町真一郎

    Proceedings of the 2015 Tohoku-Section Joint Convention of Institutes of Electrical and Information Engineers, Japan 2015 115-115 2015/08/27

    Publisher:

    DOI: 10.11528/tsjc.2015.0_115  

  59. 電子基板の欠陥検査のための文字認識

    吉田大樹, 宮崎 智, 菅谷至寛, 大町真一郎

    Proceedings of the 2015 Tohoku-Section Joint Convention of Institutes of Electrical and Information Engineers, Japan 2015 128-128 2015/08/27

    Publisher:

    DOI: 10.11528/tsjc.2015.0_128  

  60. Accuracy Improvement of Character Recognition Using Generated Samples by Morphing

    Shuto Shinbo, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    Proceedings of the 2015 Tohoku-Section Joint Convention of Institutes of Electrical and Information Engineers, Japan 2015 31-31 2015/08/27

    Publisher: Organizing Committee of Tohoku-Section Joint Convention of Institutes of Electrical and Information Engineers, Japan

    DOI: 10.11528/tsjc.2015.0_31  

  61. Gaze Detection in Omnidirectional Scene by Iterative Image Matching

    Shun Chiba, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    Proceedings of the 2015 Tohoku-Section Joint Convention of Institutes of Electrical and Information Engineers, Japan 2015 30-30 2015/08/27

    Publisher: Organizing Committee of Tohoku-Section Joint Convention of Institutes of Electrical and Information Engineers, Japan

    DOI: 10.11528/tsjc.2015.0_30  

  62. Survey of Guide Plates and Fundamental Study of Map Image Analysis for Indoor Navigation

    Kento Tonosaki, Yoshihiro Sugaya, Tomo Miyazaki, Shinichiro Omachi

    Proceedings of the 2015 Tohoku-Section Joint Convention of Institutes of Electrical and Information Engineers, Japan 2015 127-127 2015/08/27

    Publisher: Organizing Committee of Tohoku-Section Joint Convention of Institutes of Electrical and Information Engineers, Japan

    DOI: 10.11528/tsjc.2015.0_127  

  63. 屋内ナビゲーションのための案内板画像解析に関する研究

    Kento TONOSAKI, Yoshihiro SUGAYA, Tomo MIYAZAKI, Shinichiro OMACHI

    電子情報通信学会2015年総合大会 学生ポスターセッション 115-115 2015/03

  64. Estimate of Viewpoint Positions in Environment Using Eye Tracker and Omnidirectional Camera

    Shun Chiba, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    IEICE Technical Report 114 (454) 101-102 2015/02/12

    Publisher: The Institute of Electronics, Information and Communication Engineers

  65. Character Detection with Stroke Width Features from Scene Image

    Yasushi Oshima, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    IEICE Technical Report 114 (454) 99-100 2015/02/12

    Publisher: The Institute of Electronics, Information and Communication Engineers

  66. Efflciency Sprit Compression Using lmage Abstraction

    Ryosuke Ishimori, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    IEICE Technical Report 114 (454) 97-98 2015/02/12

    Publisher: The Institute of Electronics, Information and Communication Engineers

  67. Ultra-low Resolution Character Recognition by Utilizing Multiple Frames

    Shuhei Toba, Hirotaka Kudo, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    IEICE Technical Report 114 (454) 95-96 2015/02/12

    Publisher: The Institute of Electronics, Information and Communication Engineers

  68. Ultra-low Resolution Character Recognition System with Pruning Mutual Subspace Method Peer-reviewed

    Shuhei Toba, Hirotaka Kudo, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    2015 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW) 284-285 2015

    DOI: 10.1109/ICCE-TW.2015.7216900  

  69. Estimation of Gazing Points in Environment Using Eye Tracker and Omnidirectional Camera Peer-reviewed

    Shun Chiba, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    2015 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW) 47-48 2015

    DOI: 10.1109/ICCE-TW.2015.7217003  

  70. Finding Stroke Parts for Rough Text Detection in Scene Images with Random Forest Peer-reviewed

    Tomo Miyazaki, Shinichiro Omachi

    Proceedings of Joint Conference of IWAIT and IFMIA 2015

  71. Split Compression Using Image Abstraction for Object-Based Encoding

    Ryosuke Ishimori, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    PCSJ2014 2014/11

  72. A Video Coding Method for Text using Character Parameters

    Yosuke Nozue, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    PCSJ2014 2014/11

  73. A Video Coding Method for Scene Text

    Yosuke Nozue, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    Proceedings of the 2014 Tohoku-Section Joint Convention of Institutes of Electrical and Information Engineers, Japan 2014/08/21

  74. Ultra-Low Resolution Character Recognition with Increased Training Data and Image Enhancement

    Shuhei Toba, Hirotaka Kudo, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    Proceedings of the 2014 Tohoku-Section Joint Convention of Institutes of Electrical and Information Engineers, Japan 2014/08/21

  75. Automatic Generation of Kanji Fonts from Sample Designs

    Tatsunori Tsuchiya, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    Proceedings of the 2014 Tohoku-Section Joint Convention of Institutes of Electrical and Information Engineers, Japan 2014/08/21

  76. ぼけ除去及び複数フレームを利用した超低解像度文字認識

    Shuhei TOBA, Hirotaka KUDO, Tomo MIYAZAKI, Yoshihiro SUGAYA, Shinichiro OMACHI

    2014年 画像の認識・理解シンポジウム (MIRU2014) 2014/07

  77. サンプルデザインからの漢字フォントの自動生成

    Tatsunori TSUCHIYA, Tomo MIYAZAKI, Yoshihiro SUGAYA, Shinichiro OMACHI

    2014年 画像の認識・理解シンポジウム (MIRU2014) 2014/07

  78. 効率的な映像符号化のための画像抽象化法の比較検討

    Ryosuke ISHIMORI, Tomo MIYAZAKI, Yoshihiro Sugaya, Shinichiro Omachi

    電子情報通信学会2014年総合大会 学生ポスターセッション 251-251 2014/03

  79. Character Region Extraction by Exploiting Auxiliary Lines

    Shiori Kawamura, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    IEICE Technical Report 113 (431) 119-120 2014/02/06

    Publisher: The Institute of Electronics, Information and Communication Engineers

  80. Representative Graph Generation for Graph-Based Character Recognition Peer-reviewed

    Tomo Miyazaki, Shinichiro Omachi

    Journal of the Institute of Image Electronics Engineers of Japan 40 (3) 439-447 2011

    DOI: 10.11371/iieej.40.439  

    ISSN: 1348-0316 0285-9831

  81. Fast method for extracting representative graph from decorative character images Peer-reviewed

    Tomo Miyazaki, Shinichiro Omachi

    Proceedings - 2010 2nd IEEE International Conference on Network Infrastructure and Digital Content, IC-NIDC 2010 219-223 2010

    DOI: 10.1109/ICNIDC.2010.5657776  

  82. Structure Extraction from Multiple Decorative Character Images by Common Supergraph

    Tomo Miyazaki, Shinichiro Omachi, Hirotomo Aso

    Proceedings of the Meeting on Image Recognition and Understanding 2009 506-512 2009/07/20

  83. Extraction of Representative Structure of Decorative Character Images Peer-reviewed

    Tomo Miyazaki, Shinichiro Omachi, Hirotomo Aso

    PROCEEDINGS OF THE 2009 CHINESE CONFERENCE ON PATTERN RECOGNITION AND THE FIRST CJK JOINT WORKSHOP ON PATTERN RECOGNITION, VOLS 1 AND 2 944-+ 2009

    DOI: 10.1109/CCPR.2009.5343952  

  84. “Silhouette Image Recognition with Weighted Minimum Common Supergraph” Peer-reviewed

    Tomo Miyazaki, Shinichiro Omachi, Hirotomo Aso

    Journal of the Institute of Image Electronics Engineers of Japan 38 (5) 640-647 2009

    DOI: 10.11371/iieej.38.640  

    ISSN: 1348-0316 0285-9831

  85. Strucure Extraction from Silhouette Images by Weighted Minimum Common Supergraph

    Tomo Miyazaki, Shinichiro Omachi, Hirotomo Aso

    Proceedings of the Meeting on Image Recognition and Understanding 2008 1408-1413 2008/07/29

  86. Extraction of Structure of Silhouette Images by Weighted Minimum Common Supergraph Peer-reviewed

    Tomo Miyazaki, Shinichiro Omachi, Hirotomo Aso

    Proceedings of the Second Korea-Japan Joint Workshop on Pattern Recognition 107 (281) 45-49 2007

    Publisher: The Institute of Electronics, Information and Communication Engineers

    ISSN: 0913-5685

    More details Close

    It is desired to recognize objects which are distorted or rotated in images. Since it is difficult to recognize those objects by template matching in images, recognition using graph has been studied. A graph extracted by medial axis transform to a digital silhouette image is not always a graph which represents the essential structure that distincts silhouettes in a category, because of noise and distortion. Our aim in this paper is to extract the essential structure of silhouette. We propose a method to extract the structure by weighted minimum common supergraph. To show the validity of the proposed method, experiments are carried out for categorizing silhouette images using the extracted structure.

Show all ︎Show first 5

Misc. 25

  1. 天吊り案内板を用いた屋内ナビゲーション手法の検討

    竹村 貴文, 菅谷 至寛, 宮崎 智, 大町 真一郎

    平成30年度電気関係学会東北支部連合大会講演論文集 2A07 2018

  2. 監視カメラを活用したユーザの実世界位置の推定

    増保 純平, 宮崎 智, 菅谷 至寛, 大町 真一郎

    平成30年度電気関係学会東北支部連合大会講演論文集 1I05 2018

  3. 超解像を用いた動画像符号化に関する検討

    桑野 拓朗, 宮崎 智, 菅谷 至寛, 大町 真一郎

    平成30年度電気関係学会東北支部連合大会講演論文集 1D14 2018

  4. Multi-Frame Super Resolution Using 3D Convolution and RNN Prediction

    黄 希, 宮崎 智, 菅谷 至寛, 大町 真一郎

    2F12 2018

  5. Accurate Region Extraction of Character in Scene Image with User Guided Auxiliary Lines

    Tomo Miyazaki, Shiori Kawamura, Yoshihiro Sugaya, Shinichiro Omachi

    画像ラボ 28 (10月) 37-42 2017/10

    Publisher: JAPAN INDUSTRIAL PUBLISHING CO., LTD.

    ISSN: 0915-6755

  6. 重要度を考慮した情景画像中における文字情報抽出

    大平 康太, 宮崎 智, 菅谷 至寛, 大町 真一郎

    電子情報通信学会総合大会学生ポスターセッション ISS-SP-199 2017

  7. スパースコーディングを用いた動画像符号化に関する検討

    八重樫 日菜子, 宮崎 智, 菅谷 至寛, 大町 真一郎

    電子情報通信学会総合大会学生ポスターセッション ISS-SP-200 2017

  8. Determining Important Objects in Scene Image Using Neural Networks

    Tohoku-Section Joint Convention Record of Institutes of Electrical and Information Engineers, Japan 2017 2B12-158 2017

    Publisher: Organizing Committee of Tohoku-Section Joint Convention of Institutes of Electrical and Information Engineers, Japan

    DOI: 10.11528/tsjc.2017.0_158  

  9. Efficient Coding for Video Including Text Using Image Generation

    Yosuke Nozue, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    57 (3) 2016/03/15

    ISSN: 1882-7764

  10. 非線形最小化によるグラフのモデルの構築と画像認識

    酒井 利晃, 宮崎 智, 菅谷 至寛, 大町 真一郎

    電子情報通信学会2016年総合大会講演論文集 D-12-96 2016

  11. Graph Learning with Quadratic Programming in Consideration of Class Diversity

    Toshiaki Sakai, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    画像の認識・理解シンポジウム PS2-42 2016

  12. 顕著性を利用した情景画像からの重要な文字列の検出

    大平 康太, 宮崎 智, 菅谷 至寛, 大町 真一郎

    画像の認識・理解シンポジウム PS3-42 2016

  13. パーツの生成による少数サンプルからのフォント生成

    景山 竣, 宮崎 智, 菅谷 至寛, 大町 真一郎

    画像の認識・理解シンポジウム PS3-08 2016

  14. Signboard Extraction and Recognition in Subway Station Premises

    Tohoku-Section Joint Convention Record of Institutes of Electrical and Information Engineers, Japan 2016 1A03-3 2016

    Publisher: Organizing Committee of Tohoku-Section Joint Convention of Institutes of Electrical and Information Engineers, Japan

    DOI: 10.11528/tsjc.2016.0_3  

  15. Low Resolution Character Recognition Using Convolutional Neural Networks

    Kyoko Maeda, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    平成28年度電気関係学会東北支部連合大会講演論文集 1A04 2016

  16. 文字認識を利用した環境中の日本語英字翻訳を行うウェアラブルシステムの開発

    坂井 清士郎, 宮崎 智, 菅谷 至寛, 大町 真一郎

    平成28年度電気関係学会東北支部連合大会講演論文集 2016 2G04-205 2016

    Publisher: 電気関係学会東北支部連合大会実行委員会

    DOI: 10.11528/tsjc.2016.0_205  

  17. Detection of a Key String from Scene Images Using Saliency

    Kota Oodaira, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    International Workshop on Emerging ICT 2016

  18. Investigation of Convolutional Neural Network Structure for Low Resolution Character Recognition

    Kyoko Maeda, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    International Workshop on Emerging ICT 2016

  19. Automatic Synthesis of Character Pattern Using Patch Transform

    Jian Wang, Hiroya Saito, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

    Proceedings of the International Workshop on Electronics and Communications 2014

  20. Rough Detection of Text in Scene Images by Finding Stroke Parts

    Tomo Miyazaki, Shinichiro Omachi

    Proceedings of the International Workshop on Electronics and Communications 2014

  21. Extracting Representative Graph of Decorative Character Images by Random Method

    Tomo Miyazaki, Shinichiro Omachi

    Proceedings of the Third Student Organizing International Mini-Conference on Information Electronics Systems 67-68 2010

  22. Iterative Extraction of Representative Graph Using Common Features from Decorative Character Images

    Tomo Miyazaki, Shinichiro Omachi

    Proceedings of the Second Student Organizing International Mini-Conference on Information Electronics Systems 85-86 2009

  23. Extraction of Structure of Shapes Using Weighted Minimum Common Supergraph

    Tomo Miyazaki, Shinichiro Omachi, Hirotomo Aso

    Proceedings of the China-Korea-Japan Graduates Workshop on Electronic Information 49-50 2008

  24. Structure Extraction from Silhouette Images by Weighted Minimum Common Supergraph

    Tomo Miyazaki, Shinichiro Omachi, Hirotomo Aso

    Proceedings of the First Student Organizing International Mini-Conference on Information Electronics Systems 75-76 2008

  25. Silhouette Image Recognition

    Tomo Miyazaki, Shinichiro Omachi, Hirotomo Aso

    Proceedings of the Third Korea-Japan Joint Workshop on Pattern Recognition 13-14 2008

Show all ︎Show first 5

Presentations 1

  1. Recent Advances in Image Processing by Artificial Intelligence International-presentation

    Tomo Miyazaki

    International Workshop on Emerging ICT 2018/11/05

    More details Close

    With the rise of deep learning, artificial Intelligent becomes a buzzword, which we see this word almost everyday in televisions, newspapers, blogs, or books. Artificial intelligence brought tremendous progresses to a wide of research areas. This talk describes what the artificial intelligence is and introduces recent advance in the field of image processing by the deep learning.

Industrial Property Rights 1

  1. 情報端末、位置推定方法、および位置推定プログラム

    菅谷 至寛, 外崎 健人, 大町 真一郎, 宮崎 智

    Property Type: Patent

Research Projects 10

  1. 人工知能を応用した自動麻酔制御システムの構築

    星島 宏, 宮崎 智, 大町 真一郎, 水田 健太郎

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 基盤研究(C)

    Category: 基盤研究(C)

    Institution: 東北大学

    2022/04/01 - 2025/03/31

  2. Understanding of Essential Character Structure for Machine Learning and Kuzushiji Recognition

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)

    Category: Grant-in-Aid for Scientific Research (C)

    Institution: Tohoku University

    2022/04/01 - 2025/03/31

  3. Development of robotic sedation system

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Research (Exploratory)

    Category: Grant-in-Aid for Challenging Research (Exploratory)

    Institution: Tohoku University

    2021/07/09 - 2024/03/31

  4. デフォルメされたマップでのユーザー指向な屋内ナビゲーションの実現

    菅谷 至寛, 宮崎 智, 大町 真一郎

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 基盤研究(C)

    Category: 基盤研究(C)

    Institution: 東北大学

    2021/04 - 2024/03

    More details Close

    研究代表者らは、掲示されたフロアマップとスマートフォン内蔵のセンサだけで、施設管理者の協力がなくても屋内ナビを実現できる「ユーザー指向」な手法の研究開発を行ってきたが、デフォルメされ歪みの大きいマップも存在する。そのようなマップはこれまでの手法では対応できないことがわかっており、本研究課題ではユーザの負担にならない方法で歪みのあるマップに対応できる手法を開発することを目的としている。 当該年度では、歪みのあるマップでの推定精度を改善するために、マップマッチングに用いる粒子フィルタの処理の改良を行った。交差点や曲がり角のマップ上での位置と、方向転換ステップの推定位置を利用して縮尺を求めて保存しておき、粒子の縮尺の候補として利用する。また、マップの縮尺が一様でない場合に、位置と縮尺の両方について同時に正しいパラメータを持つ粒子が存在する確率は非常に低いが、各々は正しい場合が少なくないという観察に基づき、方向転換時に粒子のパラメータをシャッフルする手法を提案した。これらにより、多くの歪みのあるマップでの位置推定精度が向上した。 また、従来手法でもマップの小さなデフォルメに対応するために通路方向を利用していたが、広場領域において粒子の進みすぎ、進まなすぎが発生していた。この問題に対処するために、粒子の方位を補正する新しい手法を提案した。この手法では補正の閾値と量を通路の確信度によって動的に変化させ、無理のない補正を行う。これによって、従来よりも高い推定精度が得られることを実験によって確認した。

  5. Development of Technology for Realizing High-Compression of Video by Extracting Important Regions

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)

    Category: Grant-in-Aid for Scientific Research (B)

    Institution: Tohoku University

    2020/04 - 2023/03

  6. Molecular Structure Analysis using Statistic Graph Model and Its Applications

    Miyazaki Tomo

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)

    Category: Grant-in-Aid for Scientific Research (C)

    Institution: Tohoku University

    2019/04 - 2022/03

    More details Close

    With the development of information and communications, various large-scale molecular science data have been constructed on the Internet. It is expected that useful knowledge (e.g., molecular structures that determine pharmacological activity) can be discovered from these large-scale molecular data. However, such discovery generally relies on experts, and the automatic extraction of essential structures from large-scale data is challenging. In this study, we developed a method to statistically and automatically analyze important structures that determine the chemical properties of molecules based on large-scale molecular data. As a major achievement, we developed a method to estimate the chemical properties of molecules with high accuracy by deep learning and showed that the method is effective for analyzing molecules in physical chemistry and other fields. Furthermore, the molecular analysis method was applied to image processing to estimate the fat content of fish.

  7. カメラを持たないビジョン技術への挑戦

    大町 真一郎, 菅谷 至寛, 宮崎 智

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 挑戦的研究(萌芽)

    Category: 挑戦的研究(萌芽)

    Institution: 東北大学

    2018/06 - 2021/03

    More details Close

    ユーザがカメラを持ち歩く代わりに監視カメラ等の既設の固定カメラを利用し、その映像とユーザの行動を結びつけることでビジョン技術を活用するための基盤技術を開発している。本年度は主に、固定カメラを利用してユーザの位置・姿勢を推定する手法について検討した。具体的には、実世界に対応した俯瞰マップを用意し、動画像上の座標をマップ座標に変換をすることで位置推定を行う。動画像中の人物位置を、物体検出手法を応用することで検出する。物体検出には、ニューラルネットワークを用いた手法を採用し、学習によって精度を向上させる。そして、その人物の足元の座標を座標変換により求め、立っている位置を特定する。さらに、人物の視線を知るために、頭部方向を推定する。そのためにウェアラブルセンサの出力を用いる。メガネ型デバイスを用い、このデバイスに内蔵されているセンサの出力により人物の異動の加速度および角速度を推定し、頭部の方向を推定する。そして、実際に研究室内の環境で測定を行い、位置推定および頭部方向推定がある程度可能であることを確認した。また、これとは別に、環境中の文字認識を利用した情報提供アプリケーションのためのウェアラブルシステムについて検討した。認識結果の提示方法、ユーザインタフェース、どのようなアプリケーションがユーザにとって有益かなどについて、主観評価実験を行い評価した。その結果、ユーザに提示する情報およびユーザインタフェースの設計についてある程度の見通しを得た。

  8. Pedestrian navigation everywhere: Development of pedestrian navigation without prior data collection

    SUGAYA Yoshihiro

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)

    Category: Grant-in-Aid for Scientific Research (C)

    Institution: Tohoku University

    2018/04 - 2021/03

    More details Close

    In this research, we aimed to establish a technique for realizing pedestrian navigation using an information board, which is provided for humans. Although conventional methods had significant limitations on the floor maps that can be used, we introduced deep learning to deal with various types of maps. We also proposed a method to determine the initial parameters using known objects in the map, and showed the possibility of eliminating the manual specification of the initial position by the user. In addition, we studied the position estimation using a ceiling-suspended guide plate.

  9. Development of Technology for Realizing High-Compression of Video while Ensuring Visibility

    OMACHI Shinichiro

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)

    Category: Grant-in-Aid for Scientific Research (B)

    Institution: Tohoku University

    2016/04 - 2019/03

    More details Close

    We regard the quality of a video as the visibility of important information, and developed a technology to realize high compression rate without losing the value as video and necessary information. There are two major contributions. One is the detection method of the important region. We proposed a method using visual saliency and a method using the analysis of the meaning. The other is an efficient compression method. We proposed a method using sparse coding, a method applying image generation technology, and a method using super resolution.

  10. Flexible and Accurate Recognition for Non-Rigid Object using Graph Matching

    Miyazaki Tomo

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Research Activity start-up

    Category: Grant-in-Aid for Research Activity start-up

    Institution: Tohoku University

    2015/08 - 2017/03

    More details Close

    Graphs describe non-rigid objects which vary greatly and flexibly. However, graphs are not used for pattern recognition for image objects due to the following two problems: difficulty in extracting graphs from images and lack of a method for measuring similarity of graphs. In this study, we propose a method for image object recognition by applying probabilistic graph model to measure similarity of graphs extracted from feature points in an image. In addition, we show the improvement of recognition performance using several probabilistic graph models. These results are significant in not only patter recognition society but also industry because a use of graphs can be facilitated by the proposed method.

Show all Show first 5

Teaching Experience 5

  1. 電気回路学基礎論

  2. 電気回路学基礎演習

  3. アドバンス創造工学研修

  4. 創造工学研修

  5. Database Tohoku Institute of Technology

Social Activities 2

  1. 秋田高校出張講義

    2024/05/29 - 2024/05/29

  2. 人工知能と画像処理技術

    高大連携事業に係る地域公開講座

    2023/10/17 - 2023/10/17

Academic Activities 6

  1. Publicity Chairs, The International Conference on Document Analysis and Recognition (ICDAR)

    2017 -

    Activity type: Competition, symposium, etc.

  2. Program Committee Member, International Workshop on Historical Document Imaging and Processing (HIP)

    2015 - Present

    Activity type: Competition, symposium, etc.

  3. Program Committee Member, IJCAI-PRICAI

    2020 - 2021

    Activity type: Academic society, research group, etc.

  4. 組織 副委員長 第23回 画像の認識・理解シンポジウム

    2020 -

  5. MIRU2019 若手プログラム委員

    2019 -

    Activity type: Competition, symposium, etc.

  6. Program Committee Member, The 16th International Conference on Frontiers in Handwriting Recognition (ICFHR)

    2018 -

    Activity type: Competition, symposium, etc.

Show all Show first 5