Details of the Researcher

PHOTO

Kei Ichiji
Section
Graduate School of Medicine
Job title
Senior Assistant Professor
Degree
  • 博士(工学)(東北大学)

  • 修士(工学)(東北大学)

Researcher ID

Research History 7

  • 2023/10 - Present
    Tohoku University Division for Data Assets and Information Security, Center for Data-driven Science and Artificial Intelligence Lecturer

  • 2021/08 - Present
    Tohoku University Graduate School of Medicine Health Sciences Lecturer

  • 2019/03 - 2021/07
    Tohoku University Graduate School of Medicine Health Sciences Assistant Professor

  • 2017/04 - 2019/02
    Tohoku University Department of Electrical Engineering, Graduate School of Engineering Assistant Professor

  • 2015/04 - 2017/03
    Japan Society for the Promotion of Science

  • 2014/04 - 2015
    Tohoku University Research Institute of Electrical Communication

  • 2011/04 - 2014/03
    Japan Society for the Promotion of Science

Show all Show first 5

Education 4

  • Tohoku University Graduate School of Engineering Department of Electrical and Communication Engineering

    2011/04 - 2014/03

  • Tohoku University Graduate School of Engineering Department of Electrical and Communication Engineering

    2009/04 - 2011/03

  • Tokyo Metropolitan College of Industrial Technology

    2007/04 - 2009/03

  • Tokyo Metropolitan College of Technology Department of Electrical Engineering

    2002/04 - 2007/03

Committee Memberships 6

  • The Society of Instrument and Control Engineers, Tohoku Chapter Member of Technical Committee

    2020/01 - Present

  • 計測自動制御学会東北支部 会計幹事

    2018/01 - 2019/12

  • 日本バーチャルリアリティ学会 第 23 回大会実行委員会 総務(兼副幹事)

    2017/12 - 2018/10

  • 第25回インテリジェント・システム・シンポジウム(FAN2015)実行委員会 実行委員

    2014/09 - 2015/10

  • Executive Committee of SICE Tohoku chapter 55-year celebration symposium Treasurer

    2019/12 -

  • IEEE Computer Intelligence Society Neural Network Technical Committee Liaison, Task Force on Education

    2014/04 -

Show all ︎Show first 5

Professional Memberships 5

  • Japanese Society of Radiological Technology

    2024/04 - Present

  • IEEE Computational Intelligence Society

  • IEEE Engineering in Medicine and Biology Society

  • American Association of Physicists in Medicine

  • The Society of Instrument and Control Engineers

Research Interests 4

  • Radiation therapy

  • Biomedical intelligent system

  • Biomedical signal processing

  • Time series prediction

Research Areas 2

  • Life sciences / Radiology /

  • Life sciences / Medical systems /

Awards 13

  1. FAN2023 in Fukuoka Best Paper Award

    2023/09 Performance improvement on deep-learning model-based lung tumor motion prediction by respiratory motion data augmentation for radiotherapy

  2. FAN 2021 Online Best Paper Award

    2021/09 Steering Committee on FAN symposium Performance improvement of tumor image estimation in X-ray fluoroscopic images by interpolating and extrapolating 4DCT data

  3. SSI Excellent Paper Award

    2020/11

  4. 第28回インテリジェント・システム・シンポジウム(FAN2018) 最優秀論文賞

    2018/09 FAN運営委員会 マーカレス腫瘍追跡のための隠れマルコフモデルを用いたX線動画像からの物体輝度抽出

  5. 2017年システム・情報部門 SSI優秀論文賞

    2017/11 計測自動制御学会 システム・情報部門 肺がん放射線治療のためX線動画像中の標的腫瘍のアフィン変換に基づく追跡法

  6. 2015年システム・情報部門 SSI研究奨励賞

    2015/11 計測自動制御学会 システム・情報部門 市地慶, 本間経康, 張曉勇, 武田賢, 髙井良尋, 杉田典大, 吉澤誠,``呼吸性移動時系列の最大リャプノフ指数推定に基づく予測可能性の検討,’’ GS4-12, SY0010/15/0000-0175, pp. 175-179, 計測自動制御学会 システム・情報部門学術講演会2015(SSI2015), 北海道函館市 函館アリーナ, Nov. 20, 2015.

  7. 平成25年 電気学会 優秀論文発表A賞

    2014/09 電気学会 市地慶,本間経康,張曉勇,成田雄一郎,髙井良尋,阿部誠,杉田典大,吉澤誠: 呼吸性位置変動時系列予測の性能改善のための知的モデル化の試み,第23回インテリジェント・システム・シンポジウム FAN2013,ST-13-045,pp. 80-85,福岡市,2013年9月

  8. 平成25年 電子・情報・技術部門 技術委員会奨励賞

    2014/01 電気学会 電子・情報・技術部門 市地慶,本間経康,張曉勇,成田雄一郎,髙井良尋,阿部誠,杉田典大,吉澤誠: 呼吸性位置変動時系列予測の性能改善のための知的モデル化の試み,第23回インテリジェント・システム・シンポジウム FAN2013,ST-13-045,pp. 80-85,福岡市,2013年9月

  9. 第23回インテリジェント・システム・シンポジウムFAN2013 プレゼンテーション賞

    2013/09 FANシンポジウム運営委員会 市地慶,本間経康,張曉勇,成田雄一郎,髙井良尋,阿部誠,杉田典大,吉澤誠: 呼吸性位置変動時系列予測の性能改善のための知的モデル化の試み,第23回インテリジェント・システム・シンポジウム FAN2013,ST-13-045,pp. 80-85,福岡市,2013年9月

  10. AAPM 52nd Annual Meeting, John R. Cameron Young Investigator Competition Finalists

    2010/07 American Association of Physicists in Medicine K. Ichiji, M. Sakai, N. Homma, Y. Takai, M. Yoshizawa, “Adaptive Seasonal Autoregressive Model Based Intrafractional Lung Tumor Motion Prediction for Continuously Irradiation,” American Association of Physicists in Medicine 52nd Annual Meeting, Med. Phys.

  11. 2009年度計測自動制御学会学術奨励賞研究奨励賞

    2010/02 計測自動制御学会 市地慶, 酒井正夫, 本間経康, 髙井良尋, 吉澤誠, 竹田宏: 放射線治療のための肺腫瘍位置変動の周期ダイナミクス予測に関する一考察, 計測自動制御学会 東北支部45周年記念学術講演会, 盛岡市, 2009年9月

  12. SICE Artificial Life Systems Technical Committee Student Paper Award

    2010/02 SICE Artificial Life Systems Technical Committee K. Ichiji, M. Sakai, N. Homma, Y. Takai, M. Yoshizawa, “A Time Variant Seasonal ARIMA Model for Lung Tumor Motion Prediction,” 15th Int’l Symposium on Artificial Life and Robotics (AROB2010), OS22-4, pp.485-488, Beppu, Japan, Feb. 2010

  13. 計測自動制御学会東北支部 優秀発表奨励賞

    2009/09 計測自動制御学会東北支部 市地慶, 酒井正夫, 本間経康, 髙井良尋, 吉澤誠, 竹田宏: 放射線治療のための肺腫瘍位置変動の周期ダイナミクス予測に関する一考察, 計測自動制御学会 東北支部45周年記念学術講演会, 盛岡市, 2009年9月

Show all ︎Show 5

Papers 31

  1. Reproducible Machine Learning-Based Voice Pathology Detection: Introducing the Pitch Difference Feature. International-journal

    Jan Vrba, Jakub Steinbach, Tomáš Jirsa, Laura Verde, Roberta De Fazio, Yuwen Zeng, Kei Ichiji, Lukáš Hájek, Zuzana Sedláková, Zuzana Urbániová, Martin Chovanec, Jan Mareš, Noriyasu Homma

    Journal of voice : official journal of the Voice Foundation 2025/04/11

    DOI: 10.1016/j.jvoice.2025.03.028  

    More details Close

    PURPOSE: We introduce a novel methodology for voice pathology detection using the publicly available Saarbrücken Voice Database and a robust feature set combining commonly used acoustic handcrafted features with two novel ones: pitch difference (relative variation in fundamental frequency) and NaN feature (failed fundamental frequency estimation). METHODS: We evaluate six machine learning (ML) algorithms-support vector machine, k-nearest neighbors, naive Bayes, decision tree, random forest, and AdaBoost-using grid search for feasible hyperparameters and 20 480 different feature subsets. Top 1000 classification models-feature subset combinations for each ML algorithm are validated with repeated stratified cross-validation. To address class imbalance, we apply k-means synthetic minority oversampling technique to augment the training data. RESULTS: Our approach achieves 85.61%, 84.69%, and 85.22% unweighted average recall for females, males, and combined results, respectively. We intentionally omit accuracy as it is a highly biased metric for imbalanced data. CONCLUSION: Our study demonstrates that by following the proposed methodology and feature engineering, there is a potential in detection of various voice pathologies using ML models applied to the simplest vocal task, a sustained utterance of the vowel /a:/. To enable easier use of our methodology and to support our claims, we provide a publicly available GitHub repository with DOI 10.5281/zenodo.13771573. Finally, we provide a REFORMS checklist to enhance readability, reproducibility, and justification of our approach.

  2. Inconsistency between Human Observation and Deep Learning Models: Assessing Validity of Postmortem Computed Tomography Diagnosis of Drowning. International-journal

    Yuwen Zeng, Xiaoyong Zhang, Jiaoyang Wang, Akihito Usui, Kei Ichiji, Ivo Bukovsky, Shuoyan Chou, Masato Funayama, Noriyasu Homma

    Journal of imaging informatics in medicine 2024/02/09

    DOI: 10.1007/s10278-024-00974-6  

    More details Close

    Drowning diagnosis is a complicated process in the autopsy, even with the assistance of autopsy imaging and the on-site information from where the body was found. Previous studies have developed well-performed deep learning (DL) models for drowning diagnosis. However, the validity of the DL models was not assessed, raising doubts about whether the learned features accurately represented the medical findings observed by human experts. In this paper, we assessed the medical validity of DL models that had achieved high classification performance for drowning diagnosis. This retrospective study included autopsy cases aged 8-91 years who underwent postmortem computed tomography between 2012 and 2021 (153 drowning and 160 non-drowning cases). We first trained three deep learning models from a previous work and generated saliency maps that highlight important features in the input. To assess the validity of models, pixel-level annotations were created by four radiological technologists and further quantitatively compared with the saliency maps. All the three models demonstrated high classification performance with areas under the receiver operating characteristic curves of 0.94, 0.97, and 0.98, respectively. On the other hand, the assessment results revealed unexpected inconsistency between annotations and models' saliency maps. In fact, each model had, respectively, around 30%, 40%, and 80% of irrelevant areas in the saliency maps, suggesting the predictions of the DL models might be unreliable. The result alerts us in the careful assessment of DL tools, even those with high classification performance.

  3. How intra-source imbalanced datasets impact the performance of deep learning for COVID-19 diagnosis using chest X-ray images

    Zhang Zhang, Xiaoyong Zhang, Kei Ichiji, Ivo Bukovský, Noriyasu Homma

    Scientific Reports 13 (1) 2023/11/03

    Publisher: Springer Science and Business Media LLC

    DOI: 10.1038/s41598-023-45368-w  

    eISSN: 2045-2322

  4. Letter on Convergence of In-Parameter-Linear Nonlinear Neural Architectures With Gradient Learnings

    Ivo Bukovsky, Gejza Dohnal, Peter M. Benes, Kei Ichiji, Noriyasu Homma

    IEEE Transactions on Neural Networks and Learning Systems 34 (8) 5189-5192 2023/08

    Publisher: Institute of Electrical and Electronics Engineers (IEEE)

    DOI: 10.1109/tnnls.2021.3123533  

    ISSN: 2162-237X

    eISSN: 2162-2388

  5. Comprehensive evaluation of machine learning algorithms for predicting sleep–wake conditions and differentiating between the wake conditions before and after sleep during pregnancy based on heart rate variability

    Xue Li, Chiaki Ono, Noriko Warita, Tomoka Shoji, Takashi Nakagawa, Hitomi Usukura, Zhiqian Yu, Yuta Takahashi, Kei Ichiji, Norihiro Sugita, Natsuko Kobayashi, Saya Kikuchi, Ryoko Kimura, Yumiko Hamaie, Mizuki Hino, Yasuto Kunii, Keiko Murakami, Mami Ishikuro, Taku Obara, Tomohiro Nakamura, Fuji Nagami, Takako Takai, Soichi Ogishima, Junichi Sugawara, Tetsuro Hoshiai, Masatoshi Saito, Gen Tamiya, Nobuo Fuse, Susumu Fujii, Masaharu Nakayama, Shinichi Kuriyama, Masayuki Yamamoto, Nobuo Yaegashi, Noriyasu Homma, Hiroaki Tomita

    Frontiers in Psychiatry 14 2023/06/06

    Publisher: Frontiers Media SA

    DOI: 10.3389/fpsyt.2023.1104222  

    eISSN: 1664-0640

    More details Close

    Introduction Perinatal women tend to have difficulties with sleep along with autonomic characteristics. This study aimed to identify a machine learning algorithm capable of achieving high accuracy in predicting sleep–wake conditions and differentiating between the wake conditions before and after sleep during pregnancy based on heart rate variability (HRV). Methods Nine HRV indicators (features) and sleep–wake conditions of 154 pregnant women were measured for 1 week, from the 23rd to the 32nd weeks of pregnancy. Ten machine learning and three deep learning methods were applied to predict three types of sleep–wake conditions (wake, shallow sleep, and deep sleep). In addition, the prediction of four conditions, in which the wake conditions before and after sleep were differentiated—shallow sleep, deep sleep, and the two types of wake conditions—was also tested. Results and Discussion In the test for predicting three types of sleep–wake conditions, most of the algorithms, except for Naïve Bayes, showed higher areas under the curve (AUCs; 0.82–0.88) and accuracy (0.78–0.81). The test using four types of sleep–wake conditions with differentiation between the wake conditions before and after sleep also resulted in successful prediction by the gated recurrent unit with the highest AUC (0.86) and accuracy (0.79). Among the nine features, seven made major contributions to predicting sleep–wake conditions. Among the seven features, “the number of interval differences of successive RR intervals greater than 50 ms (NN50)” and “the proportion dividing NN50 by the total number of RR intervals (pNN50)” were useful to predict sleep–wake conditions unique to pregnancy. These findings suggest alterations in the vagal tone system specific to pregnancy.

  6. A 2.5D Deep Learning-Based Method for Drowning Diagnosis Using Post-Mortem Computed Tomography

    Yuwen Zeng, Xiaoyong Zhang, Yusuke Kawasumi, Akihito Usui, Kei Ichiji, Masato Funayama, Noriyasu Homma

    IEEE Journal of Biomedical and Health Informatics 27 (2) 1026-1035 2023/02

    DOI: 10.1109/jbhi.2022.3225416  

    ISSN: 2168-2194

    eISSN: 2168-2208

  7. How Different Data Sources Impact Deep Learning Performance in COVID-19 Diagnosis using Chest X-ray Images

    Zhang Zhang, Xiaoyong Zhang, Kei Ichiji, Ivo Bukovsky, Shuoyan Chou, Noriyasu Homma

    Proceedings - 2023 14th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2023 508-513 2023

    DOI: 10.1109/IIAI-AAI59060.2023.00103  

  8. Risk Analysis of Breast Cancer by Using Bilateral Mammographic Density Differences: A Case-Control Study

    Zhang Zhang, Xiaoyong Zhang, Jiaqi Chen, Yumi Takane, Satoru Yanagaki, Naoko Mori, Kei Ichiji, Katsuaki Kato, Mika Yanagaki, Akiko Ebata, Minoru Miyashita, Takanori Ishida, Noriyasu Homma

    The Tohoku Journal of Experimental Medicine 261 (2) 139-150 2023

    Publisher: Tohoku University Medical Press

    DOI: 10.1620/tjem.2023.j066  

    ISSN: 0040-8727

    eISSN: 1349-3329

  9. Deep Learning-Based Diagnosis of Fatal Hypothermia Using Post-Mortem Computed Tomography

    Yuwen Zeng, Xiaoyong Zhang, Issei Yoshizumi, Zhang Zhang, Taihei Mizuno, Shota Sakamoto, Yusuke Kawasumi, Akihito Usui, Kei Ichiji, Ivo Bukovsky, Masato Funayama, Noriyasu Homma

    The Tohoku Journal of Experimental Medicine 260 (3) 253-261 2023

    Publisher: Tohoku University Medical Press

    DOI: 10.1620/tjem.2023.j041  

    ISSN: 0040-8727

    eISSN: 1349-3329

  10. Assessment of a computed tomography-based radiomics approach for assessing lung function in lung cancer patients. International-journal

    Yoshiro Ieko, Noriyuki Kadoya, Yuto Sugai, Shiina Mouri, Mariko Umeda, Shohei Tanaka, Takayuki Kanai, Kei Ichiji, Takaya Yamamoto, Hisanori Ariga, Keiichi Jingu

    Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) 101 28-35 2022/07/21

    DOI: 10.1016/j.ejmp.2022.07.003  

    More details Close

    PURPOSE: We aimed to assess radiomics approaches for estimating three pulmonary function test (PFT) results (forced expiratory volume in one second [FEV1], forced vital capacity [FVC], and the ratio of FEV1 to FVC [FEV1/FVC]) using data extracted from chest computed tomography (CT) images. METHODS: This retrospective study included 85 lung cancer patients (mean age, 75 years ±8; 69 men) who underwent stereotactic body radiotherapy between 2012 and 2020. Their pretreatment chest breath-hold CT and PFT data before radiotherapy were obtained. A total of 107 radiomics features (Shape: 14, Intensity: 18, Texture: 75) were extracted using two methods: extraction of the lung tissue (<-250 HU) (APPROACH 1), and extraction of small blood vessels and lung tissue (APPROACH 2). The PFT results were estimated using the least absolute shrinkage and selection operator regression. Pearson's correlation coefficients (r) were determined for all PFT results, and the area under the curve (AUC) was calculated for FEV1/FVC (<70 %). Finally, we compared our approaches with the conventional formula (Conventional). RESULTS: For the estimated FEV1/FVC, the Pearson's r were 0.21 (P =.06), 0.69 (P <.01), and 0.73 (P <.01) for Conventional, APPROACH 1, and APPROACH 2, respectively; the AUCs for FEV1/FVC (<70 %) were 0.67 (95 % confidence interval [CI]: 0.55, 0.79), 0.82 (CI: 0.72, 0.91; P =.047) and 0.86 (CI: 0.78, 0.94; P =.01), respectively. CONCLUSIONS: The radiomics approach performed better than the conventional equation and may be useful for assessing lung function based on CT images.

  11. Improved Tumor Image Estimation in X-Ray Fluoroscopic Images by Augmenting 4DCT Data for Radiotherapy International-journal Peer-reviewed

    Takumi Shinohara, Kei Ichiji, Jiaoyang Wang, Noriyasu Homma, Xiaoyong Zhang, Norihiro Sugita, Makoto Yoshizawa, Graduate School of Biomedical Engineering, Tohoku University 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan, Tohoku University Graduate School of Medicine 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan, National Institute of Technology, Sendai College 4-16-1 Ayashi-Chuo, Aoba-ku, Sendai, Miyagi 989-3128, Japan, Graduate School of Engineering, Tohoku University 6-6-05 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan, Center for Promotion of Innovation Strategy, Tohoku University 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan

    Journal of Advanced Computational Intelligence and Intelligent Informatics 26 (4) 471-482 2022/07/20

    Publisher: Fuji Technology Press Ltd.

    DOI: 10.20965/jaciii.2022.p0471  

    ISSN: 1883-8014 1343-0130

    eISSN: 1883-8014

    More details Close

    Measurement of tumor position is important for the radiotherapy of lung tumors with respiratory motion. Although tumors can be observed using X-ray fluoroscopy during radiotherapy, it is often difficult to measure tumor position from X-ray image sequences accurately because of overlapping organs. To measure tumor position accurately, a method for extracting tumor intensities from X-ray image sequences using a hidden Markov model (HMM) has been proposed. However, the performance of tumor intensity extraction depends on limited knowledge regarding the tumor motion observed in the four-dimensional computed tomography (4DCT) data used to construct the HMM. In this study, we attempted to improve the performance of tumor intensity extraction by augmenting 4DCT data. The proposed method was tested using simulated datasets of X-ray image sequences. The experimental results indicated that the HMM using the augmentation method could improve tumor-tracking performance when the range of tumor movement during treatment differed from that in the 4DCT data.

  12. Heart Rate Information-Based Machine Learning Prediction of Emotions Among Pregnant Women

    Xue Li, Chiaki Ono, Noriko Warita, Tomoka Shoji, Takashi Nakagawa, Hitomi Usukura, Zhiqian Yu, Yuta Takahashi, Kei Ichiji, Norihiro Sugita, Natsuko Kobayashi, Saya Kikuchi, Yasuto Kunii, Keiko Murakami, Mami Ishikuro, Taku Obara, Tomohiro Nakamura, Fuji Nagami, Takako Takai, Soichi Ogishima, Junichi Sugawara, Tetsuro Hoshiai, Masatoshi Saito, Gen Tamiya, Nobuo Fuse, Shinichi Kuriyama, Masayuki Yamamoto, Nobuo Yaegashi, Noriyasu Homma, Hiroaki Tomita

    Frontiers in Psychiatry 12 2022/01/27

    Publisher: Frontiers Media SA

    DOI: 10.3389/fpsyt.2021.799029  

    eISSN: 1664-0640

    More details Close

    In this study, the extent to which different emotions of pregnant women can be predicted based on heart rate-relevant information as indicators of autonomic nervous system functioning was explored using various machine learning algorithms. Nine heart rate-relevant autonomic system indicators, including the coefficient of variation R-R interval (CVRR), standard deviation of all NN intervals (SDNN), and square root of the mean squared differences of successive NN intervals (RMSSD), were measured using a heart rate monitor (MyBeat) and four different emotions including “happy,” as a positive emotion and “anxiety,” “sad,” “frustrated,” as negative emotions were self-recorded on a smartphone application, during 1 week starting from 23rd to 32nd weeks of pregnancy from 85 pregnant women. The k-nearest neighbor (k-NN), support vector machine (SVM), logistic regression (LR), random forest (RF), naïve bayes (NB), decision tree (DT), gradient boosting trees (GBT), stochastic gradient descent (SGD), extreme gradient boosting (XGBoost), and artificial neural network (ANN) machine learning methods were applied to predict the four different emotions based on the heart rate-relevant information. To predict four different emotions, RF also showed a modest area under the receiver operating characteristic curve (AUC-ROC) of 0.70. CVRR, RMSSD, SDNN, high frequency (HF), and low frequency (LF) mostly contributed to the predictions. GBT displayed the second highest AUC (0.69). Comprehensive analyses revealed the benefits of the prediction accuracy of the RF and GBT methods and were beneficial to establish models to predict emotions based on autonomic nervous system indicators. The results implicated SDNN, RMSSD, CVRR, LF, and HF as important parameters for the predictions.

  13. Deep Learning-Based Interpretable Computer-Aided Diagnosis of Drowning for Forensic Radiology Peer-reviewed

    Yuwen Zeng, Xiaoyong Zhang, Yusuke Kawasumi, Akihito Usui, Kei Ichiji, Masato Funayama, Noriyasu Homma

    2021 60th Annual Conference of the Society of Instrument and Control Engineers of Japan, SICE 2021 820-824 2021/09/08

    Publisher: Institute of Electrical and Electronics Engineers Inc.

  14. Adaptive Gaussian Mixture Model-Based Statistical Feature Extraction for Computer-Aided Diagnosis of Micro-Calcification Clusters in Mammograms Peer-reviewed

    Zhang Zhang, Xiaoyong Zhang, Kei Ichiji, Yumi Takane, Satoru Yanagaki, Yusuke Kawasumi, Tadashi Ishibashi, Noriyasu Homma

    SICE Journal of Control, Measurement, and System Integration 13 (4) 183-190 2020/07/01

    Publisher: Informa UK Limited

    DOI: 10.9746/jcmsi.13.183  

    ISSN: 1882-4889

    eISSN: 1884-9970

  15. Hidden Markov model-based extraction of target objects in X-ray image sequence for lung radiation therapy Peer-reviewed

    Masahiro Shindo, Kei Ichiji, Noriyasu Homma, Xiaoyong Zhang, Shungo Okuda, Norihiro Sugita, Shunsuke Yamaki, Yoshihiro Takai, Makoto Yoshizawa

    IEEJ Transactions on Electronics, Information and Systems 140 (1) 49-60 2020

    Publisher: The Institute of Electrical Engineers of Japan

    DOI: 10.1541/ieejeiss.140.49  

    ISSN: 0385-4221

    eISSN: 1348-8155

  16. Noncontact monitoring of heart rate responses to taste stimuli using a video camera Peer-reviewed

    Masnani Bt Mohamed, Makoto Yoshizawa, Norihiro Sugita, Shunsuke Yamaki, Kei Ichiji

    Indonesian Journal of Electrical Engineering and Computer Science 18 (1) 293-300 2019

    DOI: 10.11591/ijeecs.v18.i1.pp293-300  

    ISSN: 2502-4752

    eISSN: 2502-4760

  17. Framework for discrete-time model reference adaptive control of weakly nonlinear systems with HONUs Peer-reviewed

    Peter M. Benes, Ivo Bukovsky, Martin Vesely, Jan Voracek, Kei Ichiji, Noriyasu Homma

    Studies in Computational Intelligence 829 239-262 2019

    Publisher: Springer

    DOI: 10.1007/978-3-030-16469-0_13  

    ISSN: 1860-949X

  18. Effect of viewing a three-dimensional movie with vertical parallax Peer-reviewed

    Norihiro Sugita, Katsuhiro Sasaki, Makoto Yoshizawa, Kei Ichiji, Makoto Abe, Noriyasu Homma, Tomoyuki Yambe

    Displays 58 20-26 2018/10

    Publisher: Elsevier {BV}

    DOI: 10.1016/j.displa.2018.10.007  

    ISSN: 0141-9382

  19. A key-point based real-time tracking of lung tumor in x-ray image sequence by using difference of Gaussians filtering and optical flow Peer-reviewed

    Ichiji, K., Yoshida, Y., Homma, N., Zhang, X., Bukovsky, I., Takai, Y., Yoshizawa, M.

    Physics in Medicine and Biology 63 (18) 2018/09/10

    Publisher: {IOP} Publishing

    DOI: 10.1088/1361-6560/aada71  

    ISSN: 1361-6560 0031-9155

  20. 乳房X線画像における良悪性鑑別が難しい腫瘤に対する深層学習の性能評価

    野呂 恭平, 張 暁勇, 高野 寛己, 市地 慶, 柳垣 聡, 高根 侑美, 石橋 忠司, 本間 経康

    日本放射線技術学会雑誌 74 (9) 1091-1092 2018/09

    Publisher: (公社)日本放射線技術学会

    ISSN: 0369-4305

    eISSN: 1881-4883

  21. Potential improvements of lung and prostate MLC tracking investigated by treatment simulations Peer-reviewed

    Jakob Toftegaard, Paul J. Keall, Ricky O'Brien, Dan Ruan, Floris Ernst, Noriyasu Homma, Kei Ichiji, Per Rugaard Poulsen

    Medical Physics 45 (5) 2218-2229 2018/05/01

    Publisher: John Wiley and Sons Ltd.

    DOI: 10.1002/mp.12868  

    ISSN: 0094-2405

  22. Dosimetric evaluation of MLC-based dynamic tumor tracking radiotherapy using digital phantom: Desired setup margin for tracking radiotherapy Peer-reviewed

    Noriyuki Kadoya, Kei Ichiji, Tomoya Uchida, Yujiro Nakajima, Ryutaro Ikeda, Yosuke Uozumi, Xiaoyong Zhang, Ivo Bukovsky, Takaya Yamamoto, Ken Takeda, Yoshihiro Takai, Keiichi Jingu, Noriyasu Homma

    Medical Dosimetry 43 (1) 74-81 2018/02/01

    Publisher: Elsevier Inc.

    DOI: 10.1016/j.meddos.2017.08.005  

    ISSN: 1873-4022 0958-3947

  23. 乳がん病変検出のための深層学習を用いた計算機支援画像診断システム Peer-reviewed

    Kei Ichiji

    Transactions of the Society of Instrument and Control Engineers 54 (8) 659‐669(J‐STAGE) 2018

    DOI: 10.9746/sicetr.54.659  

    ISSN: 0453-4654

  24. Tracking tumor boundary in MV-EPID images without implanted markers: A feasibility study Peer-reviewed

    Xiaoyong Zhang, Noriyasu Homma, Kei Ichiji, Yoshihiro Takai, Makoto Yoshizawa

    MEDICAL PHYSICS 42 (5) 2510-2523 2015/05

    DOI: 10.1118/1.4918578  

    ISSN: 0094-2405

  25. A Fast Neural Network Approach to Predict Lung Tumor Motion during Respiration for Radiation Therapy Applications Peer-reviewed

    Ivo Bukovsky, Noriyasu Homma, Kei Ichiji, Matous Cejnek, Matous Slama, PeterM. Benes, Jiri Bila

    BIOMED RESEARCH INTERNATIONAL 2015 489679 2015

    DOI: 10.1155/2015/489679  

    ISSN: 2314-6133

    eISSN: 2314-6141

  26. A kernel-based method for markerless tumor tracking in kV fluoroscopic images Peer-reviewed

    Xiaoyong Zhang, Noriyasu Homma, Kei Ichiji, Makoto Abe, Norihiro Sugita, Yoshihiro Takai, Yuichiro Narita, Makoto Yoshizawa

    PHYSICS IN MEDICINE AND BIOLOGY 59 (17) 4897-4911 2014/09

    DOI: 10.1088/0031-9155/59/17/4897  

    ISSN: 0031-9155

    eISSN: 1361-6560

  27. Tracking Tumor's Boundary in MV Image Sequences for Image-Guided Radiation Therapy

    Xiaoyong Zhang, Noriyasu Homma, Yuichiro Narita, Yoshihiro Takai, Kei Ichiji, Makoto Abe, Norihiro Sugita, Makoto Yoshizawa

    Medical Physics 41 (6) 574 2014/06/29

  28. A Faster 1-D Phase-Only Correlation-Based Method for Estimations of Translations, Rotation and Scaling in Images Peer-reviewed

    Xiaoyong Zhang, Noriyasu Homma, Kei Ichiji, Makoto Abe, Norihiro Sugita, Makoto Yoshizawa

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES E97A (3) 809-819 2014/03

    DOI: 10.1587/transfun.E97.A.809  

    ISSN: 1745-1337

  29. Markerless Lung Tumor Motion Tracking by Dynamic Decomposition of X-Ray Image Intensity. International-journal Peer-reviewed

    Noriyasu Homma, Yoshihiro Takai, Haruna Endo, Kei Ichiji, Yuichiro Narita, Xiaoyong Zhang, Masao Sakai, Makoto Osanai, Makoto Abe, Norihiro Sugita, Makoto Yoshizawa

    Journal of medical engineering 2013 340821-340821 2013

    Publisher: Hindawi Publishing Corporation

    DOI: 10.1155/2013/340821  

    ISSN: 2314-5129

    More details Close

    We propose a new markerless tracking technique of lung tumor motion by using an X-ray fluoroscopic image sequence for real-time image-guided radiation therapy (IGRT). A core innovation of the new technique is to extract a moving tumor intensity component from the fluoroscopic image intensity. The fluoroscopic intensity is the superimposition of intensity components of all the structures passed through by the X-ray. The tumor can then be extracted by decomposing the fluoroscopic intensity into the tumor intensity component and the others. The decomposition problem for more than two structures is ill posed, but it can be transformed into a well-posed one by temporally accumulating constraints that must be satisfied by the decomposed moving tumor component and the rest of the intensity components. The extracted tumor image can then be used to achieve accurate tumor motion tracking without implanted markers that are widely used in the current tracking techniques. The performance evaluation showed that the extraction error was sufficiently small and the extracted tumor tracking achieved a high and sufficient accuracy less than 1 mm for clinical datasets. These results clearly demonstrate the usefulness of the proposed method for markerless tumor motion tracking.

  30. A Time-Varying Seasonal Autoregressive Model-Based Prediction of Respiratory Motion for Tumor following Radiotherapy Peer-reviewed

    Kei Ichiji, Noriyasu Homma, Masao Sakai, Yuichiro Narita, Yoshihiro Takai, Xiaoyong Zhang, Makoto Abe, Norihiro Sugita, Makoto Yoshizawa

    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013 390325 2013

    DOI: 10.1155/2013/390325  

    ISSN: 1748-670X

  31. Intelligent Sensing and Monitoring - Respiratory Motion Prediction for Tumor Following Radiotherapy Peer-reviewed

    K. Ichiji, N. Homma, M. Sakai, I. Bukovsky, X. Zhang, M. Osanai, M. Abe, N. Sugita, M. Yoshizawa

    Journal of Artificial Intelligence and Soft Computing Research 2 (4) 331-342 2012

Show all ︎Show first 5

Misc. 58

  1. Vision Transformer-Based Breast Mass Diagnosis in Mammography Using Bilateral Information

    Tianyu Zeng, Zhang Zhang, Yuwen Zeng, Xiaoyong Zhang, Kei Ichiji, Noriyasu Homma

    2024 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET) 147-152 2024/08/26

    Publisher: IEEE

    DOI: 10.1109/iicaiet62352.2024.10730097  

  2. Examination of multimodal deep learning model for predicting recurrence of non-small cell lung cancer

    稲森瑠星, 臼崎琢磨, 市地慶, 張暁勇, 本間経康

    日本診療放射線技師会誌 71 (10) 2024

    ISSN: 2187-2538

  3. Performance improvement on deep-learning model-based lung tumor motion prediction by respiratory motion data augmentation for radiotherapy

    石井万結, 市地慶, 淡路樹, 篠原唯, ZHANG Xiaoyong, 本間経康

    インテリジェント・システム・シンポジウム(CD-ROM) 31st 2023

  4. Indoor localization by passively using Bluetooth radio waves without wearing a device

    梅原優佑, 杉田典大, 市地慶, 本間経康

    電子情報通信学会大会講演論文集(CD-ROM) 2023 2023

    ISSN: 1349-144X

  5. Saliency Map Visualization of Deep Learning for Alzheimer’s Disease Diagnosis Using PET Images

    水野泰平, ZHANG X., ZHANG X., 市地慶, 杉田典大, 本間経康

    インテリジェント・システム・シンポジウム(CD-ROM) 30th 2022

  6. Estimation of organ motion from X-ray image sequences using particle filter for lung cancer radiotherpy

    篠原匠, 市地慶, ZHANG X., ZHANG X., 杉田典大, 本間経康

    インテリジェント・システム・シンポジウム(CD-ROM) 30th 2022

  7. A Deep Learning Aided Drowning Diagnosis for Forensic Investigations using Post-Mortem Lung CT Images

    Noriyasu Homma, Xiaoyong Zhang, Amber Qureshi, Takuya Konno, Yusuke Kawasumi, Akihito Usui, Masato Funayama, Ivo Bukovsky, Kei Ichiji, Norihiro Sugita, Makoto Yoshizawa

    2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 2020/07

    Publisher: IEEE

    DOI: 10.1109/embc44109.2020.9175731  

  8. Comparison of Visible and Infrared Video Plethysmography Captured from Different Regions of the Human Face

    Norihiro Sugita, Tomoya Matsuzaki, Makoto Yoshizawa, Kei Ichiji, Shunsuke Yamaki, Noriyasu Homma

    2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 2020/07

    Publisher: IEEE

    DOI: 10.1109/embc44109.2020.9176138  

  9. Human ability enhancement for reading mammographic masses by a deep learning technique.

    Noriyasu Homma, Kyohei Noro, Xiaoyong Zhang, Yutaro Kon, Kei Ichiji, Ivo Bukovsky, Akiko Sato, Naoko Mori

    IEEE International Conference on Bioinformatics and Biomedicine(BIBM) 2962-2964 2020

    Publisher: IEEE

    DOI: 10.1109/BIBM49941.2020.9313564  

  10. Estimation of Absolute Blood Pressure Using Video Images Captured at Different Heights from the Heart

    Norihiro Sugita, Taihei Noro, Makoto Yoshizawa, Kei Ichiji, Shunsuke Yamaki, Noriyasu Homma

    2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2019/07

    Publisher: IEEE

    DOI: 10.1109/embc.2019.8856362  

  11. 深層学習は乳癌画像をどう読むか

    本間経康, 本間経康, 張暁勇, 張暁勇, 高野寛己, 野呂恭平, 張彰, 陳家旗, 市地慶, 市地慶, 杉田典大, 酒井正夫, 吉澤誠, 川住祐介, 石橋忠司

    日本乳癌画像研究会プログラム・抄録集 28th 35 2019/01/15

  12. 掌映像からの血圧情報推定に関する研究

    野呂 泰平, 松嵜 朋也, 吉澤 誠, 杉田 典大, 八巻 俊輔, 市地 慶

    生体医工学 Annual57 (Abstract) S187_2-S187_2 2019

    Publisher: 公益社団法人 日本生体医工学会

    DOI: 10.11239/jsmbe.annual57.s187_2  

    ISSN: 1347-443X

    eISSN: 1881-4379

    More details Close

    近年,ビデオカメラからの映像を用いて非接触で生体情報を取得する研究が盛んに行われている.ヘモグロビンの吸光度が緑色の波長帯域で高いという原理に基づいて,身体映像中の緑色輝度値の変化から脈波(映像脈波と呼ぶ)を計測することができる.本研究では映像脈波を用いて,血圧の絶対値を推定する手法を提案する.映像脈波は血管内の血液量変化を反映するため,血管の断面積と相関していると考えられる.そこで血管内圧と断面積の関係式を用いて,心臓からの高さが異なる2ヶ所で計測した映像脈波の振幅値の比から血管内圧を推定する式を導出した.健常な5名の被験者を対象として,安静とぺダリング運動を交互に行い血圧を変化させる実験を行った.実験の結果,実際の血圧値と推定値の相関係数は平均で0.64,推定値誤差は平均で42.7 mmHgであったが,最も良い被験者では相関係数0.89,推定値誤差は7.15 mmHgであった.誤差の原因としては,提案式に含まれる定数項の値が被験者毎に異なっているためであると考えられることから,今後,この定数値を安定的に求める方法の確立が必要である.

  13. 呼吸性移動対策のための肺腫瘍位置の時系列成分分離に基づく予測

    市地 慶

    東北医学雑誌 131-1 77-77 2019

  14. 映像脈波を用いた血圧推定の可能性

    杉田典大, 吉澤誠, 野呂泰平, 八巻俊輔, 市地慶, 本間経康, 山家智之

    日本生体医工学会大会プログラム・抄録集(Web) 58th (Abstract) S126_2-S126_2 2019

    Publisher: 公益社団法人 日本生体医工学会

    DOI: 10.11239/jsmbe.annual57.s126_2  

    ISSN: 1347-443X

    eISSN: 1881-4379

    More details Close

    近年,映像を用いた生体情報収集に関する研究が盛んに行われている.特に,映像の輝度値情報から心拍数を推定する手法については既に多くのアルゴリズムが提案されており,PCに搭載されたカメラの映像から使用者の心拍数を推定してストレス状態を評価するシステムなどの実用化もなされている.我々の研究グループでは,これまで映像から得られる脈波の形状や伝搬速度を用いて血圧の変化を推定することが可能であることを示してきたが,血管特性に着目したモデルや学習アルゴリズムなどを用いることで血圧の絶対値を推定できる可能性が出てきた.本講演では,映像から得られる脈波信号を用いて血圧を推定する原理を述べると共に,関連する研究を含め最新の成果について紹介する.

  15. 隠れマルコフモデルを用いたX線動画像からの腫瘍像抽出法の先験情報導入による性能向上の試み

    奥田隼梧, 市地慶, 本間経康, 張曉勇, 吉澤誠

    計測自動制御学会システム・情報部門学術講演会講演論文集(CD-ROM) 2019 2019

  16. 第23回大会報告

    北濵 兼一, 今村 文彦, 吉澤 誠, 高嶋 和毅, 杉田 典大, 市地 慶, 松永 忠雄, 藤田 和之, 鏡 慎吾, 田中 明, 阿部 亨, 鈴木 優, 片山 統裕, 坂本 修一, 昆陽 雅司, 永野 光, 遠藤 恵一, 今村 伊知郎, 吉田 ひさよ, 崔 正烈, 北村 喜文, 木村 敏幸, 八巻 俊輔, 城山 一真, 苗村 健

    日本バーチャルリアリティ学会誌 23 (4) 6-47 2018/12/31

    Publisher: 特定非営利活動法人 日本バーチャルリアリティ学会

    DOI: 10.18974/jvrsj.23.4_6  

    ISSN: 1342-6680

    eISSN: 2435-8746

  17. Hidden Markov model-based extraction of tumor target in X-ray image sequence for markerless tumor tracking

    新藤 雅大, 市地 慶, 本間 経康, 張 曉勇, 杉田 典大, 八巻 俊輔, 髙井 良尋, 吉澤 誠

    電気学会研究会資料. ST 2018 (39) 37-42 2018/09/26

    Publisher: 電気学会

  18. 呼吸性移動対策のための肺腫瘍位置の時系列成分分離に基づく予測

    佐藤 雄介, 市地 慶, 新藤 雅大, 張 暁勇, 角谷 倫之, 小山内 実, 高井 良尋, 本間 経康

    日本放射線技術学会雑誌 74 (9) 1092-1093 2018/09

    Publisher: (公社)日本放射線技術学会

    ISSN: 0369-4305

  19. 乳房X線画像における良悪性鑑別が難しい腫瘤に対する深層学習の性能評価

    野呂 恭平, 張 暁勇, 高野 寛己, 市地 慶, 柳垣 聡, 高根 侑美, 石橋 忠司, 本間 経康

    日本放射線技術学会雑誌 74 (9) 1091-1092 2018/09

    Publisher: (公社)日本放射線技術学会

    ISSN: 0369-4305

  20. 呼吸性移動対策のための肺腫瘍位置の時系列成分分離に基づく予測

    佐藤 雄介, 市地 慶, 新藤 雅大, 張 暁勇, 角谷 倫之, 小山内 実, 高井 良尋, 本間 経康

    日本放射線技術学会雑誌 74 (9) 1092-1093 2018/09

    Publisher: (公社)日本放射線技術学会

    ISSN: 0369-4305

    eISSN: 1881-4883

  21. An Optimization Technique to Extract Video Pulse Wave for Non-Contact Remote Monitoring of Autonomic Nervous System and Blood Pressure Variability. Peer-reviewed

    Makoto Yoshizawa, Norihiro Sugita, Akira Tanaka, Kei Ichiji, Noriyasu Homma, Tomoyuki Yambe

    IEEE 7th Global Conference on Consumer Electronics, GCCE 2018, Nara, Japan, October 9-12, 2018 425-428 2018

    Publisher: IEEE

    DOI: 10.1109/GCCE.2018.8574732  

  22. マーカレス腫瘍追跡のためのX線動画像の物体輝度の重畳状態を考慮した動体抽出の検討

    新藤雅大, 市地慶, 張暁勇, 本間経康, 齊藤望, 高井良尋, 吉澤誠

    計測自動制御学会システム・情報部門学術講演会講演論文集(CD-ROM) 2017 ROMBUNNO.SS12‐11 2017/11/25

  23. 肺がん放射線治療のためのX線動画像中の標的腫瘍のアフィン変換に基づく追跡法

    齊藤望, 市地慶, 張暁勇, 本間経康, 新藤雅大, 高井良尋, 吉澤誠

    計測自動制御学会システム・情報部門学術講演会講演論文集(CD-ROM) 2017 ROMBUNNO.SS12‐4 2017/11/25

  24. 最大リャプノフ指数推定に基づく呼吸性移動時系列の予測可能性の検討 Invited

    市地慶, 本間経康, 張曉勇, 武田賢, 髙井良尋, 杉田典大, 吉澤誠

    東北医学雑誌 129 (1) 47-47 2017/08

  25. Mathematical Techniques for Markerless Tumor Motion Following Radiation Therapy

    Noriyasu Homma, Yoshihiro Takai, Xiaoyong Zhang, Kei Ichiji, Yosuke Uozumi, Masao Sakai, Makoto Sakai

    Journal of Medical Physics 37 (2) 7-16 2017/04

    Publisher: (公社)日本医学物理学会

    ISSN: 1345-5354

    eISSN: 2186-9634

  26. Higher order neural units for efficient adaptive control of weakly nonlinear systems

    Ivo Bukovsky, Jan Voracek, Kei Ichiji, Homma Noriyasu

    IJCCI 2017 - Proceedings of the 9th International Joint Conference on Computational Intelligence 149-157 2017

    DOI: 10.5220/0006557301490157  

  27. Deep learning for medical big data and computer-aided diagnosis

    本間 経康, 張 暁勇, 鈴木 真太郎, 魚住 洋佑, 市地 慶, 柳垣 聡, 高根 侑美, 川住 祐介, 石橋 忠司, 吉澤 誠

    Transactions of Japanese Society for Medical and Biological Engineering 55 (3) 228-228 2017

    Publisher: 公益社団法人 日本生体医工学会

    DOI: 10.11239/jsmbe.55Annual.228  

    ISSN: 1347-443X

    eISSN: 1881-4379

    More details Close

    &lt;p&gt;In recent years, deep convolutional neural network (DCNN) has attracted great attention due to its outstanding performance in recognition of natural images. However, its performance for medical image recognition is still uncertain because collecting a large-scale medical training data is difficult. To solve this shortage of training data problem, we propose a transfer learning strategy for mass detection in mammograms. We firstly train a DCNN using a large-scale natural image dataset for classification of 1,000 classes. Then, we modify a fully-connected output layer of the DCNN and subsequently train the DCNN using a relatively small-scale mammogram dataset for two classes classification: mass and normal. The experimental results showed that sensitivity of the mass detection was about 90% and false positive was 20 %. In addition, we discuss another solution for the shortage of training data by collecting a medical big data in way of an autonomous decentralized system.&lt;/p&gt;

  28. A Design of User-oriented Sensor Network for Effective Monitoring of Health Condition of Many Subjects

    116 (361) 57-62 2016/12/15

    Publisher: 電子情報通信学会

    ISSN: 0913-5685

  29. A real-time homography-based tracking method for tracking deformable tumor motion in fluoroscopy Peer-reviewed

    Xiaoyong Zhang, Noriyasu Homma, Kei Ichiji, Norihiro Sugita, Yoshihiro Takai, Makoto Yoshizawa

    2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan, SICE 2016 1673-1677 2016/11/18

    Publisher: Institute of Electrical and Electronics Engineers Inc.

    DOI: 10.1109/SICE.2016.7749183  

  30. Detection of Masses On Mammograms Using Deep Convolutional Neural Network: A Feasibility Study

    S. Suzuki, X. Zhang, N. Homma, K. Ichiji, Y. Kawasumi, T. Ishibashi, M. Yoshizawa

    MEDICAL PHYSICS 43 (6) 2016/06

    DOI: 10.1118/1.4957862  

    ISSN: 0094-2405

    eISSN: 2473-4209

  31. Dosimetric Evaluation of Dynamic Tumor Tracking Radiation Therapy Using Digital Phantom: A Study On Margin and Desired Accuracy of Tracking

    T. Uchida, N. Kadoya, K. Ichiji, Y. Nakajima, K. Jingu, M. Osanai, K. Takeda, Y. Takai, N. Homma

    MEDICAL PHYSICS 43 (6) 3638-3638 2016/06

    DOI: 10.1118/1.4956939  

    ISSN: 0094-2405

    eISSN: 2473-4209

  32. 多人数の状況を効果的に観測するウェアラブル生体センサネットワークのシミュレーション評価

    佐々木, 塁, 市地, 慶, 阿部, 亨, 菅沼, 拓夫

    第78回全国大会講演論文集 2016 (1) 461-462 2016/03/10

    More details Close

    災害時の避難所や,多参加者のスポーツイベントなど,少数の担当者が多人数の健康状態を管理する必要がある状況では,ウェアラブル生体センサによる状態の自動モニタリングが有効である.しかし,多数の観測対象者が狭い範囲に集中する環境においては,通信帯域などのネットワークリソースが不足し,リアルタイムのモニタリングが困難となる可能性がある.これに対し我々は,取得するデータの種類や頻度を状況に応じて動的に調整することで,多数のセンサ情報を効果的に観測する利用者指向センサネットワークシステムを提案している.本発表では,この概念を適用したウェアラブル生体センサネットワークシステムの有効性を無線ネットワークシミュレーターを用いて検証する.

  33. B-7-24 多人数の状況を効果的に観測するウェアラブル生体センサネットワークシステムの基本設計(B-7.情報ネットワーク,一般セッション)

    佐々木 塁, 市地 慶, 阿部 亨, 菅沼 拓夫

    電子情報通信学会ソサイエティ大会講演論文集 2015 (2) 95 2015/08/25

    Publisher: 一般社団法人電子情報通信学会

  34. A Real-Time Homography-Based Algorithm for Markerless Deformable Lung Tumor Motion Tracking Using KV X-Ray Fluoroscopy

    X. Zhang, N. Homma, Y. Takai, K. Ichiji, N. Sugita, M. Abe, M. Yoshizawa

    MEDICAL PHYSICS 42 (6) 3656-3656 2015/06

    ISSN: 0094-2405

  35. ネットワーク情報のAR可視化によるネットワーク管理手法に関する基礎的検討

    大沼, 信也, 市地, 慶, 阿部, 亨, 菅沼, 拓夫

    第77回全国大会講演論文集 2015 (1) 29-30 2015/03/17

    More details Close

    ネットワークインフラの普及により,ネットワーク技術に精通していない一般のユーザがネットワーク機器を操作してネットワーク情報にアクセスする機会が増えつつある.一般に、ネットワーク情報の確認や設定のためには,ネットワーク管理者への問い合わせや,機種によって異なる機器へのアクセス方法の調査など,煩雑な作業が必要とされる.本研究では,現場の一般ユーザが容易に,かつ直感的にネットワーク機器に関する情報を理解可能とする可視化システムを提案する.本システムでは,Software Defined Networkを用いてネットワーク情報を取得し,Augmented Reality (AR) 技術を用いて,それら情報を,表示端末に表示された機器上に可視化表示する.本稿では,可視化システムのアーキテクチャの基本設計,およびその有効性について基礎的検討を行う.

  36. 多人数の状況を効果的に観測する利用者指向センサネットワークの基礎的検討

    佐々木, 塁, 市地, 慶, 阿部, 亨, 菅沼, 拓夫

    第77回全国大会講演論文集 2015 (1) 109-110 2015/03/17

    More details Close

    本研究では,対象者の状況に応じて,計算機リソースを動的に割り当てることで効率的に多人数の状態を観測する利用者指向センサネットワークを提案する.具体的には,加速度センサ等の生体センサを用いて多人数の対象者の健康状態や活動状況を観測する.さらに,センサデータを解析し,通常とは異なる状態が検出された対象者に対して,センサデータの獲得頻度を高め,ネットワークやストレージ等の計算機リソースを多く割り当てて,集中的に観測することで,より効率的にセンサデータの収集を行う.本稿ではこのような利用者指向センサネットワークを実現するためのプラットフォームについて検討し,適用事例について議論する.

  37. Target Extraction from X-ray Image Sequence by using Gaussian Mixture Model for Lung Tumor Tracking

    SHIBUSAWA Naoki, ICHIJI Kei, YOSHIDA Yusuke, ZHANG Xiaoyang, HOMMA Noriyasu, TAKAI Yoshihiro, YOSHIZAWA Makoto

    IEICE technical report. 114 (482) 277-282 2015/03

    Publisher: 一般社団法人電子情報通信学会

    ISSN: 0913-5685

    More details Close

    During treatment fraction, accurate tracking of moving tumor by using X-ray imaging is important for radiation therapy. However, superimposition of tumor and other structure in X-ray image can reduce tracking accuracy. In this study, a moving target extraction method taken into account the transparent characteristic of X-ray by using Gaussian mixture model (GMM) was evaluated by using an X-ray image sequence of a 3D printed dynamic phantom based on clinical CT volume data. In comparison with other method, the moving target extracted by the GMM-based method was similar to the original phantom and improved tracking accuracy.

  38. Is mammographic breast density a risk factor for breast cancer in Japanese women? Peer-reviewed

    張 暁勇, 筑島徳政, 渡邉篤俊, 大橋悠二, 長谷川奈保, 市地慶, 田村篤史, 小山内実, 本間経康

    東北大医保健学科紀要 24 (1) 45-51 2015/03

    Publisher: 東北大学医学部保健学科

    ISSN: 1348-8899

  39. TUMOR MOTION TRACKING USING KV/MV X-RAY FLUOROSCOPY FOR ADAPTIVE RADIATION THERAPY Peer-reviewed

    Xiaoyong Zhang, Noriyasu Homma, Kei Ichiji, Makoto Abe, Norihiro Sugita, Ivo Bukovsky, Yoshihiro Takai, Makoto Yoshizawa

    2015 INTERNATIONAL WORKSHOP ON COMPUTATIONAL INTELLIGENCE FOR MULTIMEDIA UNDERSTANDING (IWCIM) 1-4 2015

    DOI: 10.1109/IWCIM.2015.7347084  

  40. A REAL-TIME FEATURE-BASED MARKERLESS TUMOR TRACKING METHOD USING X-RAY IMAGE SEQUENCE FOR RADIOTHERAPY Peer-reviewed

    Yusuke Yoshida, Kei Ichiji, Xiaoyong Zhang, Noriyasu Homma, Yoshihiro Takai, Makoto Yoshizawa

    2015 INTERNATIONAL WORKSHOP ON COMPUTATIONAL INTELLIGENCE FOR MULTIMEDIA UNDERSTANDING (IWCIM) 1-5 2015

    DOI: 10.1109/IWCIM.2015.7347086  

  41. A Faster 1-D Phase-Only Correlation-Based Method for Estimations of Translations, Rotation and Scaling in Images

    IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 97 (3) 809-819 2014/03

    Publisher: Institute of Electronics, Information and Communication Engineers

    ISSN: 0916-8508

  42. 高精度放射線治療における呼吸性移動対策のコツとピットフォール MLC Trackingのための呼吸性肺腫瘍移動の予測法

    本間経康, 高井良尋, 市地慶, 張暁勇, 成田雄一郎

    Rad Fan 12 (3) 97-100,23 2014/02/25

    ISSN: 1348-3498

  43. Study of Learning Entropy for Novelty Detection in Lung Tumor Motion Prediction for Target Tracking Radiation Therapy Peer-reviewed

    Ivo Bukovsky, Noriyasu Homma, Matous Cejnek, Kei Ichiji

    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) 3124-3129 2014

    ISSN: 2161-4393

  44. Intelligent Modeling of Respiratory-induced Tumor Motion for Improving Prediction Accuracy

    市地 慶, 本間 経康, 張 曉勇

    電気学会研究会資料. ST 2013 (29) 85-90 2013/09/25

    Publisher: 電気学会

  45. Dosimetric Impact in Moving Tumor Under Irradiation Dose by Chasing Its Motion with DMLC

    Y. Narita, N. Homma, K. Ichiji, Y. Takai

    MEDICAL PHYSICS 40 (6) 2013/06

    DOI: 10.1118/1.4814588  

    ISSN: 0094-2405

  46. A Kernel-Based Method for Non-Rigid Tumor Tracking in KV Image Sequence

    X. Zhang, N. Homma, K. Ichiji, Y. Takai, Y. Narita, M. Abe, N. Sugita, M. Yoshizawa

    MEDICAL PHYSICS 40 (6) 469 2013/06

    DOI: 10.1118/1.4815509  

    ISSN: 0094-2405

  47. Moving Object Segmentation in Surveillance Video Based on Adaptive Mixtures

    Xiaoyong Zhang, Noriyasu Homma, Kei Ichiji, Makoto Abe, Norihiro Sugita, Makoto Yoshizawa

    2013 PROCEEDINGS OF SICE ANNUAL CONFERENCE (SICE) 1322-1325 2013

    ISSN: 1550-0322

  48. A kernel-based method for real-time markerless tumor tracking in fluoroscopic image sequence

    Xiaoyong Zhang, Noriyasu Homma, Yoshihiro Takai, Yuichiro Narita, Kei Ichiji, Makoto Abe, Norihiro Sugita, Makoto Yoshizawa

    Proceedings of the SICE Annual Conference 828-832 2013/01/01

  49. Respiratory Motion Prediction for Tumor Following Radiotherapy by using Time-variant Seasonal Autoregressive Techniques Peer-reviewed

    Kei Ichiji, Noriyasu Homma, Masao Sakai, Yoshihiro Takai, Yuichiro Narita, Mokoto Abe, Norihiro Sugita, Makoto Yoshizawa

    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) 6028-6031 2012

    DOI: 10.1109/EMBC.2012.6347368  

    ISSN: 1557-170X

  50. Tumor image extraction from fluoroscopy for a markerless lung tumor motion tracking and prediction Peer-reviewed

    Noriyasu Homma, Keita Ishihara, Yoshihiro Takai, Haruna Endo, Kei Ichiji, Masao Sakai, Yuichiro Narita, Makoto Abe, Norihiro Sugita, Makoto Yoshizawa

    MEDICAL IMAGING 2012: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING 8316 8316 2012

    DOI: 10.1117/12.911960  

    ISSN: 0277-786X

  51. 高精度放射線治療のための肺腫瘍位置変動予測法に関する研究

    市地 慶

    東北大学電通談話会記録 80巻1号 125-126 2011

  52. Intelligent sensing of biomedical signals - Lung tumor motion prediction for accurate radiotherapy Peer-reviewed

    Kei Ichiji, Noriyasu Homma, Ivo Bukovsky, Makoto Yoshizawa

    IEEE SSCI 2011 - Symposium Series on Computational Intelligence - CompSens 2011: 2011 IEEE Workshop on Merging Fields of Computational Intelligence and Sensor Technology 35-41 2011

    DOI: 10.1109/MFCIST.2011.5949518  

  53. Lung tumor motion prediction based on multiple time-variant seasonal autoregressive model for tumor following radiotherapy Peer-reviewed

    Ichiji, K., Sakai, M., Homma, N., Takai, Y., Yoshizawa, M.

    2010 IEEE/SICE International Symposium on System Integration: SI International 2010 - The 3rd Symposium on System Integration, SII 2010, Proceedings 353-358 2010/12

    DOI: 10.1109/SII.2010.5708351  

  54. Lung motion prediction by static neural networks Peer-reviewed

    Rodriguez, R., Ichiji, K., Bukovsky, I., Bila, J., Homma, N.

    4th International Symposium on Measurement, Analysis and Modelling of Human Functions 2010, ISHF 2010 2010/06

  55. Prediction Methods of Unsteady Prediction Tumour Motion for Radiotherapy Invited Peer-reviewed

    Masao Sakai, Kei Ichiji, Noriyasu Homma, Yoshihiro Takai, Makoto Yoshizawa

    Proceedings of 5th Symposium on Bio-Nano Electronics 75-79 2010/02/24

  56. A time variant seasonal ARIMA model for lung tumor motion prediction Peer-reviewed

    Ichiji, K., Sakai, M., Homma, N., Takai, Y., Yoshizawa, M.

    Proceedings of the 15th International Symposium on Artificial Life and Robotics, AROB 15th'10 485-488 2010/02

  57. Development of a Prediction System for Lung Tumor Motion for Radiation Therapy Peer-reviewed

    Kei ICHIJI, Masao SAKAI, Noriyasu HOMMA, Yoshihiro TAKAI, Makoto YOSHIZAWA

    5th International Symposium on Medical, Bio- and Nano-Electronics 109-110 2010/02

  58. Testing Potentials of Dynamic Quadratic Neural Unit for Prediction of Lung Motion during Respiration for Tracking Radiation Therapy Peer-reviewed

    Ivo Bukovsky, Kei Ichiji, Noriyasu Homma, Makoto Yoshizawa, Ricardo Rodriguez

    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010 2010

    DOI: 10.1109/IJCNN.2010.5596748  

    ISSN: 2161-4393

Show all ︎Show first 5

Books and Other Publications 1

  1. Frontiers in Radiation Oncology

    K. Ichiji, N. Homma, M. Sakai, M. Abe, N. Sugita, M. Yoshizawa

    InTech 2013/07/03

    DOI: 10.5772/56554  

    ISBN: 9789535111634

Presentations 112

  1. Attention Optimization in AI-Aided Drowning Diagnosis Using Post-Mortem CT to Mitigate Overfitting with Limited Training Data

    Zhang Zhang, Xiaoyong Zhang, Taihei Mizuno, Kei Ichiji, Noriyasu Homma

    2024 International Joint Conference on Neural Networks (IJCNN) 2024/06/30

  2. Integration of Classification and Segmentation for Computer-Aided Diagnosis System of Drowning

    Yuwen Zeng, Xiaoyong Zhang, Kei Ichiji, Noriyasu Homma

    2024 International Joint Conference on Neural Networks (IJCNN) 2024/06/30

  3. Computational Intelligence Methods for Advancing Radiation Therapy Systems in Cancer Treatment Invited

    Kei Ichiji

    UniMAP WEBINAR, Center of Excellence (COE) of Sports Engineering Research Center (SERC), Faculty of Electronic Engineering and Technology, Universiti Malaysia Perlis 2023/05/24

  4. Performance Improvement of Deep Learning Model Using Saliency Maps: A Case Study on Drowning Diagnosis Using PMCT

    水野泰平, 張曉勇, 市地慶, 杉田典大, 本間経康

    インテリジェント・システム・シンポジウム(CD-ROM) 2023

  5. Time-varying state-space time series model for prediction of lung tumor motion during radiotherapy

    Yui SHINOHARA, Kei ICHIJI, Itsuki AWAJI, Mayu ISHII, Xiaoyong ZHANG, Noriyasu HOMMA

    インテリジェント・システム・シンポジウム(CD-ROM) 2023

  6. Performance improvement on deep-learning model-based lung tumor motion prediction by respiratory motion data augmentation for radiotherapy

    石井万結, 市地慶, 淡路樹, 篠原唯, ZHANG Xiaoyong, 本間経康

    インテリジェント・システム・シンポジウム(CD-ROM) 2023

  7. Deep Learning-Based Interpretable Computer-Aided Diagnosis of Drowning for Forensic Radiology

    Yuwen Zeng, Xiaoyong Zhang, Yusuke Kawasumi, Akihito Usui, Kei Ichiji, Masato Funayama, Noriyasu Homma

    2021 60th Annual Conference of the Society of Instrument and Control Engineers of Japan, SICE 2021 2021/09/08

  8. A study on indoor physical activity monitoring using Bluetooth signal strength

    Saida Salima Nawrin, Kei Ichiji, Shunsuke Yamaki, Norihiro Sugita, Makoto Yoshizawa

    LifeTech 2021 - 2021 IEEE 3rd Global Conference on Life Sciences and Technologies 2021/03/09

  9. A study on indoor physical activity monitoring using Bluetooth signal strength.

    Saida Salima Nawrin, Kei Ichiji, Shunsuke Yamaki, Norihiro Sugita, Makoto Yoshizawa

    2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech) 2021/03

  10. 通信機器の電波強度による室内身体活動推定に関する研究

    内田 未央, 市地 慶, 杉田 典大, 吉澤 誠

    第54回 ⽇本⽣体医⼯学会東北⽀部⼤会 2021/01/23

  11. リアルタイム適応放射線治療に向けた体内腫瘍位置の計測・予測

    市地 慶

    SICE Tohokuオンライン講演会 〜東北地方の若手研究者と語り合う〜 2020/12/22

  12. 肺がん放射線治療のための多変量カーネル密度推定を用いたX線動画像からの腫瘍像抽出

    奥田 隼梧, 市地 慶, 本間 経康, 張 曉勇, 吉澤 誠

    計測自動制御学会 システム・情報部門 学術講演会 2020(SSI2020) 2020/11/15

  13. 肺がん放射線治療のための目標範囲提示型呼吸誘導システムによる呼吸動態再現性向上の試み

    堀池 巧, 市地 慶, 本間 経康, 張 暁勇, 吉澤 誠

    計測自動制御学会 システム・情報部門 学術講演会 2020(SSI2020) 2020/11/15

  14. Learning entropy of adaptive filters via clustering techniques

    Ivo Bukovsky, Gejza Dohnal, Pavel Steinbauer, Ondrej Budik, Kei Ichiji, Homma Noriyasu

    2020 Sensor Signal Processing for Defence Conference, SSPD 2020 2020/09/01

  15. Deep Neural Network-Based Prediction of Dual-Energy Subtraction Images From Single-Energy X-Ray Fluoroscopy: A Feasibility Study

    J Wang, K Ichiji, N Homma, X Zhang, Y Takai

    2020 Joint AAPM/COMP Meeting 2020/07/12

  16. Evaluation of CT-Based Radiomics Features for Predicting Parameters Measured Using a Pulmonary Function Test International-presentation

    Y Ieko, N Kadoya, K Abe, S Tanaka, H Takagi, T Kanai, K Ichiji, T Yamamoto, H Ariga, K Jingu

    2020 Joint AAPM/COMP Meeting 2020/07/12

  17. Comparison of Visible and Infrared Video Plethysmography Captured from Different Regions of the Human Face

    Norihiro Sugita, Tomoya Matsuzaki, Makoto Yoshizawa, Kei Ichiji, Shunsuke Yamaki, Noriyasu Homma

    Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2020/07

  18. A Deep Learning Aided Drowning Diagnosis for Forensic Investigations using Post-Mortem Lung CT Images

    Noriyasu Homma, Xiaoyong Zhang, Amber Qureshi, Takuya Konno, Yusuke Kawasumi, Akihito Usui, Masato Funayama, Ivo Bukovsky, Kei Ichiji, Norihiro Sugita, Makoto Yoshizawa

    Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2020/07

  19. Estimation of Absolute Blood Pressure using Video Images Captured at Different Heights from the Heart

    Norihiro Sugita, Taihei Noro, Makoto Yoshizawa, Kei Ichiji, Shunsuke Yamaki, Noriyasu Homma

    Proc. 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019/07

  20. 左右乳腺濃度差による乳癌リスク分析 症例対照研究(Risk Analysis of Bilateral Mammographic Density Differences for Breast Cancer: A Case-Control Study)

    Chen Jiaqi, Zhang Xiaoyong, Ishibashi Tadashi, Takane Yumi, Yanagaki Satoru, Shibuya Daisuke, Ichiji Kei, Osanai Makoto, Homma Noriyasu

    日本乳癌学会総会プログラム抄録集 2019/07

  21. 隠れマルコフモデルによるX 線透視上の軟部組織描出能向上の試み

    奥田隼梧, 市地 慶, 本間経康, 張 曉勇, 新藤雅大, 吉澤 誠

    第52回 日本生体医工学会東北支部大会 2019/02/16

  22. 深層学習は乳癌画像をどう読むか

    本間経康, 本間経康, 張暁勇, 張暁勇, 高野寛己, 野呂恭平, 張彰, 陳家旗, 市地慶, 市地慶, 杉田典大, 酒井正夫, 吉澤誠, 川住祐介, 石橋忠司

    日本乳癌画像研究会プログラム・抄録集 2019/01/15

  23. Estimation of Absolute Blood Pressure Using Video Images Captured at Different Heights from the Heart.

    Norihiro Sugita, Taihei Noro, Makoto Yoshizawa, Kei Ichiji, Shunsuke Yamaki, Noriyasu Homma

    41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019, Berlin, Germany, July 23-27, 2019 2019

  24. 映像脈波を用いた血圧推定の可能性

    杉田典大, 吉澤誠, 野呂泰平, 八巻俊輔, 市地慶, 本間経康, 山家智之

    日本生体医工学会大会プログラム・抄録集(Web) 2019

  25. 掌映像からの血圧情報推定に関する研究

    野呂泰平, 松嵜朋也, 吉澤誠, 杉田典大, 八巻俊輔, 市地慶

    日本生体医工学会大会プログラム・抄録集(Web) 2019

  26. 調光機能を有した非接触脈拍数測定器スマートヘルスミラーの開発

    鈴木勢至, 市地慶, 杉田典大, 吉澤誠

    計測自動制御学会システム・情報部門学術講演会講演論文集(CD-ROM) 2018/11/25

  27. 呼吸性移動対策のための肺腫瘍位置の時系列成分分離に基づく予測

    佐藤雄介, 市地慶, 新藤雅大, 張曉勇, 角谷倫之, 小山内実, 髙井良尋, 本間経康

    第46回日本放射線技術学会秋季学術大会 2018/10/05

    More details Close

    OS-6, 日本放射線技術学会雑誌, Vol. 74, No. 9, pp. 1092-1093

  28. 乳房X線画像における良悪性鑑別が難しい腫瘤に対する深層学習の性能評価

    野呂恭平, 張曉勇, 高野寛己, 市地慶, 柳垣聡, 高根侑美, 石橋忠司, 本間経康

    第46回日本放射線技術学会秋季学術大会 2018/10/05

    More details Close

    OS-3, 日本放射線技術学会雑誌, Vol. 74, No. 9, pp. 1091-1092

  29. Hidden Markov model‐based extraction of tumor target in X‐ray image sequence for markerless tumor tracking

    新藤雅大, 市地慶, 本間経康, ZHANG Xiaoyong, 杉田典大, 八巻俊輔, 高井良尋, 吉澤誠

    電気学会研究会資料 2018/09/26

  30. Multi-Scale Uncertainty Analysis for Data Driven Models of Oxyfuel Combustion in Bubbling Fluidized Bed Combustor International-presentation

    I. Bukovský, V. Malý, P. Skopec, K. Ichiji, N. Homma

    Modelling Smart Grids 2018, Energy Workshop 2018/09/20

  31. Probabilistic Decomposition of X-Ray Image Sequence to Extract Obscure Target Objects for Monitoring Intrafractional Organ Motion International-presentation

    M Shindo, K Ichiji, N Homma, X Zhang, Y Takai, M Yoshizawa

    AAPM 60th Annual Meeting & Exhibition (AAPM2018) 2018/07/31

  32. An Optimization Technique to Extract Video Pulse Wave for Non-Contact Remote Monitoring of Autonomic Nervous System and Blood Pressure Variability.

    Makoto Yoshizawa, Norihiro Sugita, Akira Tanaka, Kei Ichiji, Noriyasu Homma, Tomoyuki Yambe

    IEEE 7th Global Conference on Consumer Electronics, GCCE 2018, Nara, Japan, October 9-12, 2018 2018

  33. 状態空間時系列モデルに基づく肺腫瘍位置の呼吸性移動時系列予測

    佐藤雄介, 市地慶, 本間経康

    計測自動制御学会東北支部 第313回研究集会 2017/12/09

  34. 肺がん放射線治療のためのX線動画像中の標的腫瘍のアフィン変換に基づく追跡法

    齊藤望, 市地慶, 張暁勇, 本間経康, 新藤雅大, 高井良尋, 吉澤誠

    計測自動制御学会システム・情報部門学術講演会講演論文集(CD-ROM) 2017/11/25

  35. マーカレス腫瘍追跡のためのX線動画像の物体輝度の重畳状態を考慮した動体抽出の検討

    新藤雅大, 市地慶, 張暁勇, 本間経康, 齊藤望, 高井良尋, 吉澤誠

    計測自動制御学会システム・情報部門学術講演会講演論文集(CD-ROM) 2017/11/25

  36. マーカレス追尾照射に必要な数理技術

    本間経康, 髙井良尋, 張曉勇, 市地慶, 魚住洋佑, 酒井正夫, 吉澤誠

    第113回日本医学物理学会学術大会 2017/04/13

  37. マーカレス追尾照射のための画像特徴点に基づく肺腫瘍位置のリアルタイム追跡法

    市地慶

    H28東北大学・新潟大学合同放射線治療セミナー 2017/01/07

  38. Deep Convolutional Neural Network の転移学習による乳房X線画像上の腫瘤検出

    鈴木真太郎, 張暁勇, 本間経康, 市地慶, 魚住洋佑, 高根侑美, 川住祐介, 石橋忠司, 吉澤誠

    第10回コンピューテーショナル・インテリジェンス研究会 2016/12/16

  39. 多人数の状況を効果的に観測する利用者指向センサネットワークの設計

    佐々木塁, 市地慶, 阿部亨, 菅沼拓夫

    電子情報通信学会 情報ネットワーク研究会 2016/12/15

  40. A Design of User-oriented Sensor Network for Effective Monitoring of Health Condition of Many Subjects

    佐々木塁, 市地慶, 市地慶, 阿部亨, 阿部亨, 菅沼拓夫, 菅沼拓夫

    電子情報通信学会技術研究報告 2016/12/08

  41. POZNATKY Z VÝZKUMU NEURO-REGULÁTORŮA Z LABORATORNÍ PRAXE (Findings from the research of neuro-controllers and laboratory practice) International-presentation

    I. Bukovsky, P. M. Benes, M. Vesely, J. Kalivoda, J. Pitel, O. Liska, K. Ichiji, N. Homma

    Automatizace, regulace a procesy 2016 (Automation, regulation and processes 2016, ARaP2016) 2016/11/30

  42. Impact of DIR uncertainty on lung SBRT dose accumulation with MLC-based dynamic tumor tracking (DIR誤差が肺癌SBRTの線量合算評価に与える影響: MLC追尾照射法での検討)

    R. Ikeda, N. Kadoya, K. Ichiji, Y. Nakajima, M. Saito, K. Abe, K. Ito, M. Chiba, S. Dobashi, K. Takeda, N. Homma, K. Jingu

    日本放射線腫瘍学会第29回学術大会 2016/11/25

  43. A real-time homography-based tracking method for tracking deformable tumor motion in fluoroscopy

    Xiaoyong Zhang, Noriyasu Homma, Kei Ichiji, Norihiro Sugita, Yoshihiro Takai, Makoto Yoshizawa

    2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan, SICE 2016 2016/11/18

    More details Close

    In radiation therapy, respiration-induced tumor motion significantly limits the efficiency of the radiation delivery, and brings potential risk to healthy organs and tissues. In order to deliver a sufficient high-dose radiation in adaptive with the tumor motion, a kilo-voltage (kV) X-ray fluoroscopy imaging system has been used to monitor the tumor motion in real-time during the treatment. In this paper, we present a fast and robust tracking algorithm to track deformable lung tumor motion in the kV fluoroscopic image sequence. Given a kV fluoroscopy, the tumor motion is represented by a nonlinear homographic transformation of a pre-defined tumor template. The homographic transformation is then estimated by minimizing a sum-of-squared-difference (SSD) between the template image and the observed image. To improve the computational efficiency, an efficient second-order minimization method is employed to solve the problem of SSD minimization. The experimental results conducted on clinical kV fluoroscopies demonstrated that the proposed method is capable of tracking the tumor motion in real-time and its performance is superior to conventional tracking methods in terms of tracking accuracy and computational cost.

  44. Mass detection using deep convolutional neural network for mammographic computer-aided diagnosis

    Shintaro Suzuki, Xiaoyong Zhang, Noriyasu Homma, Kei Ichiji, Norihiro Sugita, Yusuke Kawasumi, Tadashi Ishibashi, Makoto Yoshizawa

    2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan, SICE 2016 2016/11/18

    More details Close

    In recent years, a deep convolutional neural network (DCNN) has attracted great attention due to its outstanding performance in recognition of natural images. However, the DCNN performance for medical image recognition is still uncertain because collecting a large amount of training data is difficult. To solve the problem of the DCNN, we adopt a transfer learning strategy, and demonstrate feasibilities of the DCNN and of the transfer learning strategy for mass detection in mammographic images. We adopt a DCNN architecture that consists of 8 layers with weight, including 5 convolutional layers, and 3 fully-connected layers in this study. We first train the DCNN using about 1.2 million natural images for classification of 1,000 classes. Then, we modify the last fully-connected layer of the DCNN and subsequently train the DCNN using 1,656 regions of interest in mammographic image for two classes classification: mass and normal. The detection test is conducted on 198 mammographic images including 99 mass images and 99 normal images. The experimental results showed that the sensitivity of the mass detection was 89.9 % and the false positive was 19.2 %. These results demonstrated that the DCNN trained by transfer learning strategy has a potential to be a key system for mammographic mass detection computer-aided diagnosis (CAD). In addition, to the best of our knowledge, our study is the first demonstration of the DCNN for mammographic CAD application.

  45. Adaptive Novelty Detection with Learning Entropy Study on Multichannel Data

    I. Bukovsky, K. Ichiji, M. Cejnek, O. Vysata, N. Homma

    第26回インテリジェント・システム・シンポジウム(FAN2016) 2016/10/28

  46. Mass Detection Using Deep Convolutional Neural Network for Mammographic Computer-Aided Diagnosis International-presentation

    S. Suzuki, X. Zhang, N. Homma, K. Ichiji, N. Sugita, Y. Kawasumi, T. Ishibashi, M. Yoshizawa

    2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE) 2016/09

  47. A real-time homography-based tracking method for tracking deformable tumor motion in fluoroscopy International-presentation

    X. Zhang, N. Homma, K. Ichiji, N. Sugita, Y. Takai, M. Yoshizawa

    2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE) 2016/09

  48. Dosimetric Evaluation of Dynamic Tumor Tracking Radiation Therapy Using Digital Phantom: A Study On Margin and Desired Accuracy of Tracking International-presentation

    T. Uchida, N. Kadoya, K. Ichiji, Y. Nakajima, K. Jingu, M. Osanai, K. Takeda, Y. Takai, N. Homma

    American Association of Physicists in Medicine 58th Annual Meeting (AAPM2016) 2016/07

  49. Detection of Masses On Mammograms Using Deep Convolutional Neural Network: A Feasibility Study International-presentation

    S. Suzuki, X. Zhang, N. Homma, K. Ichiji, Y. Kawasumi, T. Ishibashi, M. Yoshizawa

    American Association of Physicists in Medicine 58th Annual Meeting (AAPM2016) 2016/07

  50. Markerless dynamic MLC trackingの技術開発

    市地慶

    第42回臨床医学物理研究会 2016/06/18

  51. 多人数の状況を効果的に観測するウェアラブル生体センサネットワークのシミュレーション評価

    佐々木塁, 市地慶, 阿部亨, 菅沼拓夫

    情報処理学会第78 回全国大会 2016/03/10

  52. Tumor Motion Tracking Using kV/MV X-ray Fluoroscopy for Adaptive Radiation Therapy

    張曉勇, 本間経康, 市地慶, 杉田典大, 髙井良尋, 吉澤誠

    計測自動制御学会 システム・情報部門学術講演会2015(SSI2015) 2015/11/20

  53. 呼吸性移動時系列の最大リャプノフ指数推定に基づく予測可能性の検討

    市地慶, 本間経康, 張曉勇, 武田賢, 髙井良尋, 杉田典大, 吉澤誠

    計測自動制御学会 システム・情報部門学術講演会2015(SSI2015) 2015/11/20

  54. Impact of dynamic MLC-based tumor tracking on radiotherapy for lung cancer: Dosimetric comparison between non-gated, gated and tracking plan

    Y. Nakajima, N. Kadoya, K. Ichiji, K. Ito, K. Takeda, Y. Takai, N. Homma, K. Jingu

    日本放射線腫瘍学会 第28回学術大会 2015/11/19

  55. 呼吸性移動時系列の最大リャプノフ指数推定に基づく予測可能性の検討

    市地慶, 市地慶, 本間経康, 張曉勇, 武田賢, 井良尋, 杉田典大, 吉澤誠

    計測自動制御学会システム・情報部門学術講演会講演論文集(CD-ROM) 2015/11/18

  56. Prediction and Control of Respiration-Induced Lung Tumor Motion for Accurate Radiotherapy International-presentation

    K. Ichiji

    6th seminar DSP 6/2015 - Seminar Series on Digital Signal Processing, Adaptive Signal Processing and Informatics Computational Centre (ASPICC) 2015/11/02

  57. A real-time feature-based markerless tumor tracking method using X-ray image sequence for radiotherapy International-presentation

    Y. Yoshida, K. Ichiji, X. Zhang, N. Homma, Y. Takai, M. Yoshizawa

    Computational Intelligence for Multimedia Understanding (IWCIM), 2015 International Workshop on 2015/10/29

  58. Tumor motion tracking using kV/MV X-ray fluoroscopy for adaptive radiation therapy International-presentation

    X. Zhang, N. Homma, K. Ichiji, M. Abe, N. Sugita, I. Bukovsky, Y. Takai, M. Yoshizawa

    Computational Intelligence for Multimedia Understanding (IWCIM), 2015 International Workshop on 2015/10/29

  59. A Real-Time Homography-Based Tumor Tracking Method for Image-Guided Radiation Therapy

    X. Zhang, N. Homma, K. Ichiji, M. Abe, N. Sugita, Y. Takai, M. Yoshizawa

    第25回インテリジェント・システム・シンポジウム(FAN2015) 2015/09/25

  60. 赤外線深度センサを用いた体表面同時多点の呼吸誘導システムに関する研究

    塚田卓也, 市地慶, 張曉勇, 本間経康, 髙井良尋, 吉澤誠

    第25回インテリジェント・システム・シンポジウム(FAN2015) 2015/09/25

  61. 赤外線深度センサを用いた体表面同時多点の呼吸誘導システムに関する研究

    塚田拓也, 市地慶, ZHANG X, 本間経康, 高井良尋, 吉澤誠

    インテリジェント・システム・シンポジウム(CD-ROM) 2015/09/24

  62. 多人数の状況を効果的に観測する ウェアラブル生体センサネットワークシステムの基本設計

    佐々木塁, 市地慶, 阿部亨, 菅沼拓夫

    第7回コンピューテーショナル・インテリジェンス研究会 2015/09/08

  63. 多人数の状況を効果的に観測するウェアラブル生体センサネットワークシステムの基本設計

    佐々木塁, 市地慶, 市地慶, 阿部亨, 阿部亨, 菅沼拓夫, 菅沼拓夫

    電子情報通信学会大会講演論文集(CD-ROM) 2015/08/25

  64. A Real-Time Homography-Based Algorithm for Markerless Deformable Lung Tumor Motion Tracking Using KV X-Ray Fluoroscopy International-presentation

    X. Zhang, N. Homma, Y. Takai, K. Ichiji, N. Sugita, M. Abe, M. Yoshizawa

    American Association of Physicists in Medicine 56th Annual Meeting (AAPM2015) 2015/07/15

  65. 乳房X線画像診断支援のための木構造自己組織化マップによる自動特徴抽出の試み

    長谷川奈保, 本間経康, 張暁勇, 市地慶, 小山内実, 阿部誠, 杉田典大, 吉澤誠

    第7回コンピューテーショナル・インテリジェンス研究会 2015/05/30

  66. ネットワーク情報のAR可視化によるネットワーク管理手法に関する基礎的検討

    大沼信也, 市地慶, 阿部亨, 菅沼拓夫

    情報処理学会第77回全国大会 2015/03/19

  67. 多人数の状況を効果的に観測する利用者指向センサネットワークの基礎的検討

    佐々木塁, 市地慶, 阿部亨, 菅沼拓夫

    情報処理学会第77回全国大会 2015/03/19

  68. SDNを利用したネットワーク情報のAR可視化システムの基礎的検討

    大沼信也, 市地慶, 阿部亨, 菅沼拓夫

    情報処理学会全国大会講演論文集 2015/03/17

  69. 多人数の状況を効果的に観測する利用者指向センサネットワークの基礎的検討

    佐々木塁, 市地慶, 阿部亨, 菅沼拓夫

    情報処理学会全国大会講演論文集 2015/03/17

  70. 肺腫瘍追跡のための混合正規分布モデルを用いたX線画像シーケンスの背景差分

    澁澤直樹, 市地慶, 吉田裕輔, 張曉勇, 本間経康, 高井良尋, 吉澤誠

    電子情報通信学会 医用画像研究会 2015/03

  71. Target Extraction from X-ray Image Sequence by using Gaussian Mixture Model for Lung Tumor Tracking

    澁澤直樹, 市地慶, 吉田裕輔, ZHANG Xiaoyang, 本間経康, 高井良尋, 吉澤誠

    電子情報通信学会技術研究報告 2015/02/23

  72. 呼吸誘導システムのための赤外線深度センサによる体表面多点動態計測

    塚田拓也, 市地慶, 張曉勇, 本間経康, 髙井良尋, 吉澤誠

    計測自動制御学会東北支部第293 回研究集会 2015/02/19

  73. A Region-Scalable Level Set Method for Tracking Tumor in Megavoltage X-Ray Image Sequences

    X. Zhang, N. Homma, K. Ichiji, Y. Takai, M. Yoshizawa

    第48回 日本生体医工学会 東北支部大会 2014/12

  74. 追尾放射線治療における X 線透視画像を用いた腫瘍位置計測法

    吉田裕輔, 市地慶, 張曉勇, 本間経康, 髙井良尋, 澁澤直樹, 吉澤誠

    第48回 日本生体医工学会 東北支部大会 2014/12

  75. 放射線治療のための X 線透視画像シーケンスからの腫瘍輝度成分の分離

    澁澤直樹, 市地慶, 張曉勇, 本間経康, 髙井良尋, 吉澤誠

    第48回 日本生体医工学会 東北支部大会 2014/12

  76. 放射線治療のための混合正規分布モデルを用いた X 線透視画像シーケンスからの腫瘍輝度成分の抽出・強調

    澁澤直樹, 市地慶, 張曉勇, 本間経康, 髙井良尋, 吉澤誠

    計測自動制御学会 東北支部50周年記念学術講演会 2014/12

  77. X 線透視画像を用いた特徴点ベースのマーカレス腫瘍位置計測法

    吉田裕輔, 市地慶, 張曉勇, 本間経康, 髙井良尋, 澁澤直樹, 吉澤誠

    計測自動制御学会 東北支部50周年記念学術講演会 2014/12

  78. Study of Learning Entropy for Novelty Detection in Lung Tumor Motion Prediction for Target Tracking Radiation Therapy International-presentation

    I. Bukovsky, N. Homma, M. Cejnek, K. Ichiji

    2014 International Joint Conference on Neural Networks (IJCNN), 2014 IEEE World Congress on Computational Intelligence (WCCI 2014) 2014/07/06

  79. Tracking Tumor’s Boundary in MV Image Sequences for Image-Guided Radiation Therapy International-presentation

    X. Zhang, N. Homma, Y. Narita, K. Ichiji, M. Abe, N. Sugita, M. Yoshizawa

    American Association of Physicists in Medicine 56th Annual Meeting (AAPM2014) 2014/07

  80. 追尾放射線治療のためのMV X 線画像を用いたマーカレス腫瘍位置計測に関する一考察

    吉田裕輔, 市地慶, 張曉勇, 本間経康, 髙井良尋, 成田雄一郎, 澁澤直樹, 小山内実, 阿部誠, 杉田典大, 吉澤誠

    計測自動制御学会東北支部第287 回研究集会 2014/03

  81. マーカレス動体追尾照射システムの開発

    本間経康, 酒井正夫, 張曉勇, 市地慶, 澁澤直樹, 吉田裕輔, 阿部誠, 杉田典大, 吉澤誠, 成田雄一郎, 髙井良尋

    日本放射線腫瘍学会 第27回日本高精度放射線外部照射研究会 2014/02

  82. 呼吸性位置変動時系列予測の性能改善のための知的モデル化の試み

    市地慶, 本間経康, 張暁勇, 成田雄一郎, 髙井良尋, 阿部誠, 杉田典大, 吉澤誠

    電気学会 電子・情報・システム部門 第9回システム技術講演会 2014/01

  83. マーカレス動体追尾照射のための汎用型リニアック制御システムの開発に向けて

    本間経康, 酒井正夫, 張曉勇, 市地慶, 渋澤直樹, 吉田裕輔, 阿部誠, 杉田典大, 吉澤誠, 成田雄一郎, 髙井良尋

    日本放射線腫瘍学会第26回学術大会 2013/10

  84. 呼吸性位置変動時系列予測の性能改善のための知的モデル化の試み

    市地慶, 本間経康, ZHANG Xiaoyong, 成田雄一郎, 高井良尋, 阿部誠, 杉田典大, 吉澤誠

    電気学会システム研究会資料 2013/09/25

  85. 呼吸性位置変動時系列予測の性能改善のための知的モデル化の試み

    市地慶, 本間経康, 張曉勇, 成田雄一郎, 髙井良尋, 阿部誠, 杉田典大, 吉澤誠

    第23回インテリジェント・システム・シンポジウム FAN2013 2013/09/25

  86. A Kernel-Based Method for Real-Time Markerless Tumor Tracking in Fluoroscopic Image Sequence International-presentation

    X. Zhang, N. Homma, Y. Takai, N. Yuichiro, K. Ichiji, M. Abe, N. Sugita, M. Yoshizawa

    SICE Annual Conference 2013 2013/09

  87. Moving Object Segmentation in Surveillance Video Based on Adaptive Mixtures International-presentation

    X. Zhang, N. Homma, K. Ichiji, M. Abe, N. Sugita, M. Yoshizawa

    SICE Annual Conference 2013 2013/09

  88. A Kernel-Based Method for Non-Rigid Tumor Tracking in KV Image Sequence International-presentation

    X. Zhang, N. Homma, K. Ichiji, Y. Takai, Y. Narita, M. Abe, N. Sugita, M Yoshizawa

    American Association of Physicists in Medicine 55th Annual Meeting (AAPM2013) 2013/08

  89. Dosimetric Impact in Moving Tumor Under Irradiation Dose by Chasing Its Motion with DMLC International-presentation

    Y. Narita, N. Homma, K. Ichiji, Y. Takai

    American Association of Physicists in Medicine 55th Annual Meeting (AAPM2013) 2013/08

  90. A Kernel-Based Method for Non-Rigid Tumor Tracking in KV Image Sequence

    X. Zhang, N. Homma, K. Ichiji, Y. Takai, Y. Narita, M. Abe, N. Sugita, M. Yoshizawa

    MEDICAL PHYSICS 2013/06

    More details Close

    Purpose: To develop a fast algorithm to track the non‐rigid lung tumor motion in KV X‐ray image sequence for image‐guided radiation therapy (IGRT). Methods: The KV X‐ray image sequence was acquired on the Varian On‐Board Imager (OBI) KV imaging system. As a pre‐processing, a histogram equalization was employed to enhance the tumor contrast in the images. In the first frame, a target model containing tumor area was delineated manually, and its feature space was represented by its histogram weighted with an isotropic kernel. In the subsequent frames, the tumor location was estimated by maximizing a Bhattacharyya coefficient which measures the similarity between the target candidates in the current frame and the target model in the previous frame. The numerical solution of maximizing the Bhattacharyya coefficient was performed by using a mean‐shift algorithm. Results: We implemented four conventional template matching algorithms to compare their performance with the proposed method. Experiments were conducted on four lung tumor kV image sequences of resolution 0.26 mm/pixel. Each sequence consists of 100 frames. The ground truths of the tumor motion were obtained by manual localization. Experimental results demonstrated that the proposed algorithm was superior to the conventional template matching algorithms in terms of its accuracy and computational cost. Conclusion: This study aims at developing a robust and fast algorithm used for tracking the lung tumor for real‐time IGRT. Due to the histogram representation of the target feature, the proposed method is robust against the tumor&#039;s shape deformation. In addition, the proposed tracking algorithm is based on a kernel gradient estimation and its computational cost is much lower than that of the conventional template matching algorithms that involve in exhaustive search procedures. The proposed method shows the effectiveness of tracking tumor in KV image sequence and a promising prospect for MV image sequence. © 2013, American Association of Physicists in Medicine. All rights reserved.

  91. Dosimetric Impact in Moving Tumor Under Irradiation Dose by Chasing Its Motion with DMLC

    Y. Narita, N. Homma, K. Ichiji, Y. Takai

    MEDICAL PHYSICS 2013/06

  92. A Faster Phase-Only Correlation-Based Method for Estimations of Translations, Rotation and Scaling in Images

    X. Zhang, N. Homma, K. Ichiji, M. Abe, N. Sugita, M. Yoshizawa

    第11回 情報シナジー研究会 2013/03

  93. 高精度放射線治療のためのMV X線画像によるマーカレス腫瘍位置計測法

    石川駿介, 市地慶, 本間経康, 張曉勇, 髙井良尋, 成田雄一郎, 酒井正夫, 阿部誠, 杉田典大, 吉澤誠

    計測自動制御学会東北支部第279 回研究集会 2013/03

  94. 追尾放射線治療のための高速な肺腫瘍位置変動計測

    澁澤直樹, 市地慶, 張暁勇, 本間経康, 髙井良尋, 成田雄一郎, 石原恵太, 酒井正夫, 阿部誠, 杉田典大, 吉澤誠

    計測自動制御学会東北支部第279 回研究集会 2013/02

  95. MLC 可変動体追尾 その1:4Dファントムの幾何学的駆動精度とMLC同期駆動精度の評価

    若生愛奏, 成田雄一郎, 本間経康, 市地慶, 張暁勇, 細川洋一郎, 髙井良尋

    日本放射線腫瘍学会第25回学術大会 2012/11

  96. MLC 可変動体追尾 その 2:追尾遅延に伴う腫瘍内線量誤差の評価

    若生愛奏, 成田雄一郎, 本間経康, 市地慶, 張暁勇, 細川洋一郎, 髙井良尋

    日本放射線腫瘍学会第25回学術大会 2012/11

  97. Respiratory Motion Prediction for Tumor Following Radiotherapy by using Time-variant Seasonal Autoregressive Techniques International-presentation

    K. Ichiji, N. Homma, M. Sakai, Y. Takai, Y. Narita, M. Abe, N. Sugita, M. Yoshizawa

    34th Annual International Conference of the IEEE EMBS (EMBC2012) 2012/08

  98. An Extended Time-Variant Seasonal Autoregressive Model-Based Prediction for Irregular Breathing Motion Tracking International-presentation

    K. Ichiji, N. Homma, M. Sakai, Y. Narita, Y. Takai, M. Yoshizawa

    American Association of Physicists in Medicine 54th Annual Meeting (AAPM2012) 2012/07

  99. An Extended Time-Variant Seasonal Autoregressive Model-Based Prediction for Irregular Breathing Motion Tracking

    K. Ichiji, N. Homma, M. Sakai, Y. Narita, Y. Takai, M. Yoshizawa

    MEDICAL PHYSICS 2012/06

  100. Tumor image extraction from fluoroscopy for a markerless lung tumor motion tracking and prediction International-presentation

    N. Homma, K. Ishihara, Y. Takai, H. Endo, K. Ichiji, M. Sakai, Y. Narita, M. Abe, N. Sugita, M. Yoshizawa

    SPIE Medical Imaging 2012 2012/02

  101. Intelligent Sensing of Biomedical Signals - Lung Tumor Motion Prediction for Accurate Radiotherapy International-presentation

    K. Ichiji, N. Homma, I. Bukovsky, M. Yoshizawa

    IEEE Symposium Series on Computational Intelligence (SSCI) / IEEE Workshop CompSens 2011 2011/04

  102. Lung Tumor Motion Prediction Based On Multiple Time-Variant Seasonal Autoregressive Model for Tumor Following Radiotherapy International-presentation

    K. Ichiji, M. Sakai, N. Homma, Y. Takai, M. Yoshizawa

    IEEE/SICE Int’l Symposium on System Integration (SII2010) 2010/12

  103. 時変位相自己回帰モデルによる追尾照射放射線治療のための肺腫瘍位置変動予測法

    市地慶, 酒井正夫, 本間経康, 髙井良尋, 吉澤誠

    第11回 公益社団法人 計測自動制御学会 システムインテグレーション部門講演会 2010/12

  104. A Time Variant Seasonal ARIMA Model for Lung Tumor Motion Prediction International-presentation

    K. Ichiji, M. Sakai, N. Homma, Y. Takai, M. Yoshizawa

    15th Int’l Symposium on Artificial Life and Robotics (AROB2010) 2010/10

  105. Adaptive Seasonal Autoregressive Model Based Intrafractional Lung Tumor Motion Prediction for Continuously Irradiation International-presentation

    K. Ichiji, M. Sakai, N. Homma, Y. Takai, M. Yoshizawa

    American Association of Physicists in Medicine 52nd Annual Meeting (AAPM2010) 2010/07

  106. Testing Potentials of Dynamic Quadratic Neural Unit for Prediction of Lung Motion during Respiration for Tracking Radiation Therapy International-presentation

    I. Bukovsky, K. Ichiji, N. Homma, M. Yoshizawa

    2010 Int’l Joint Conference on Neural Networks (IJCNN2010) 2010/07

  107. Lung Motion Prediction by Static Neural Networks International-presentation

    R. Rodriguez, K. Ichiji, I. Bukovsky, J. Bila, N. Homma

    4th Int'l Symposium on Measurement, Analysis and Modeling of Human Functions 2010/06/14

  108. Prediction Method of Unsteady Periodic Tumour Motion for Radiotherapy International-presentation

    M. Sakai, K. Ichiji, N. Homma, Y. Takai, M. Yoshizawa

    5th Int'l Symposium on Medical, Bio- and Nano-Electronics 2010/02

  109. Development of a Prediction System for Lung Tumor Motion for Radiation Therapy International-presentation

    K. Ichiji, M. Sakai, N. Homma, Y. Takai, M. Yoshizawa

    5th Int'l Symposium on Medical, Bio- and Nano-Electronics 2010/02

  110. Lung tumor motion prediction based on multiple time-variant seasonal autoregressive model for tumor following radiotherapy

    Kei Ichiji, Masao Sakai, Noriyasu Homma, Yoshihiro Takai, Makoto Yoshizawa

    2010 IEEE/SICE International Symposium on System Integration: SI International 2010 - The 3rd Symposium on System Integration, SII 2010, Proceedings 2010

    More details Close

    This paper presents a new lung tumor motion prediction method for tumor following radiation therapy. An essential core of the method is accurate estimation of complex fluctuation of time-variant periodical nature of lung tumor motion. Such estimation can be achieved by using a multiple time-variant seasonal autoregressive integral moving average (TVSARIMA) model in which several windows of different lengths is used to calculate correlation based time-variant period of the motion. The proposed method provides the final predicted value as a combination of those based on different window lengths. We have tested unweighted average, multiple regression, and multi layer perceptron (MLP) for the combination method by using real lung tumor motion data. The proposed methods with multiple regression and MLP based combinations showed high accurate prediction and are superior to the single TVSARIMA based prediction. The most highest prediction accuracy was achieved by using the MLP based combination. The average errors were 0.7953±0.0243[mm] at 0.5[sec] ahead and 0.8581±0.0510[mm] at 1.0[sec] ahead predictions, respectively. The results clearly demonstrate that the proposed method with an appropriate combination of several TVSARIMA is useful for improving the prediction performance. ©2010 IEEE.

  111. SU‐HH‐BRB‐10: Adaptive Seasonal Autoregressive Model Based Intrafractional Lung Tumor Motion Prediction for Continuously Irradiation

    K. Ichiji, M. Sakai, N. Homma, Y. Takai, M. Yoshizawa

    Medical Physics 2010

    More details Close

    Purpose: To irradiate continuously to a moving tumor, core techniques are to observe position and shape of the target tumor and to adapt the radiation beam to the intra‐fractional motion and deformation. In addition, we need a compensation technique because measurement of the tumor position and control of the radiation device have some time delays. In this study, we propose a new prediction method of lung tumor motion, to compensate the time delays. Method and Materials: An essential core of the proposed method is adaptation to time‐variant nature of lung tumor motion. Lung tumor motion observed at Hokkaido university hospital was used for development of the proposed method. The motion has time‐variant, but periodic nature, that is, the cyclic period changes with time. This nature often causes the rise of the prediction error when we use conventional prediction method for periodical time series (e.g. seasonal autoregressive integral moving‐average model: SARIMA). The proposed method is based on SARIMA model, but was developed to take into account the quasi‐periodic nature of the lung tumor motion. To estimate the time‐variant period, we adopted correlation analysis. Then, the conventional SARIMA model was modified to a time‐variant SARIMA model by using the estimated period. Results: Prediction error of the proposed method was compared with that of the conventional methods, by using real lung tumor motion. Experimental results show that the prediction error of the proposed method was the least. The average of prediction error are 0.7911 [mm] at 0.5[sec] ahead and 0.8818[mm] at 1.0[sec] ahead, respectively. Conclusion: We have developed the new prediction method of the lung tumor motion for compensation of time‐delays of radiation device. The proposed method achieved highly accurate prediction of the real lung tumor motion. The method can thus sufficient for continuously irradiation to the moving lung tumor. © 2010, American Association of Physicists in Medicine. All rights reserved.

  112. 放射線治療のための肺腫瘍位置変動の周期ダイナミクス予測に関する一考察

    市地慶, 酒井正夫, 本間経康, 髙井良尋, 吉澤誠, 竹田宏

    計測自動制御学会 東北支部45周年記念学術講演会 2009/09

Show all Show first 5

Industrial Property Rights 7

  1. 画像処理装置,画像処理方法および画像処理プログラム

    本間 経康, 市地 慶, 新藤 雅大, 杉田 典大, 吉澤 誠, ▲高▼井 良尋

    特許第7273416号

    Property Type: Patent

  2. 画像処理装置、画像処理方法、及び、画像処理プログラム

    本間 経康, 酒井 正夫, 市地 慶, 澁澤 直樹, 張 暁勇, 阿部 誠, 杉田 典大, 吉澤 誠, ▲高▼井 良尋

    特許第6524497号

    Property Type: Patent

  3. 信号処理装置、信号処理プログラム及び信号処理プログラムを記録したコンピュータ読み取り可能な記録媒体

    本間 経康, 高井 良尋, 遠藤 春奈, 市地 慶, 酒井 正夫, 吉澤 誠

    特許第5797197号

    Property Type: Patent

  4. 画像処理装置,画像処理方法および画像処理プログラム

    本間 経康, 市地 慶, 新藤 雅大, 杉田 典大, 吉澤 誠, ▲高▼井 良尋

    Property Type: Patent

  5. 画像処理装置、画像処理方法、及び、画像処理プログラム

    本間 経康, 酒井 正夫, 市地 慶, 澁澤 直樹, 張 暁勇, 阿部 誠, 杉田 典大, 吉澤 誠, ▲高▼井 良尋

    Property Type: Patent

  6. 信号処理装置、信号処理プログラム及び信号処理プログラムを記録したコンピュータ読み取り可能な記録媒体

    本間 経康, 高井 良尋, 遠藤 春奈, 市地 慶, 酒井 正夫, 吉澤 誠

    Property Type: Patent

  7. 信号処理装置、信号処理プログラム及び信号処理プログラムを記録したコンピュータ読み取り可能な記録媒体

    本間 経康, 高井 良尋, 遠藤 春奈, 市地 慶, 酒井 正夫, 吉澤 誠

    Property Type: Patent

Show all Show first 5

Research Projects 10

  1. PET検査の体動補正技術評価に向けた新たなシステム開発

    小田桐 逸人, 渡部 浩司, 高浪 健太郎, 市地 慶

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業

    Category: 基盤研究(C)

    Institution: 東北大学

    2025/04/01 - 2028/03/31

  2. データ同化技法で拓く適応照射のための2D-X線透視像からの実時間的3D体内動態の推定

    市地 慶

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業

    Category: 基盤研究(C)

    Institution: 東北大学

    2024/04/01 - 2027/03/31

  3. 深層強化学習による真の“人工知能型”自動放射線照射計画法の開発

    角谷 倫之, 山本 貴也, 梶川 智博, 市地 慶

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業

    Category: 基盤研究(C)

    Institution: 東北大学

    2023/04/01 - 2026/03/31

  4. イメージプレチスモグラムによる血管状態推定を用いた動脈紋認証に関する基礎的研究

    杉田 典大, 八巻 俊輔, 湯田 恵美, 市地 慶

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業

    Category: 基盤研究(B)

    Institution: 東北大学

    2021/04/01 - 2025/03/31

    More details Close

    本研究では,映像から得られる脈動情報であるイメージプレチスモグラム(IPG)の生成パターンが皮下の動脈走行状態によって決まるという仮説のもと,身体の各部位でみられるIPG生成パターンに基づいて個人認証を行う「動脈紋」認証の手法を確立することを目指している.本研究課題では,この「動脈紋」抽出に関する基礎的技術を確立すると共に,その認証精度について検証を行う.従来の生体認証が主に静止画像から捉えられる身体的特徴を用いるのに対し,本提案手法では経時的変化を伴うIPGの生成パターンから得られる身体的特徴を用いており,偽造が極めて困難であると考えられる. 初年度にあたる今年度は,先行研究で報告されている,手掌部において得られるIPGで生じる特異的な脈動領域である「ホットスポット」の存在を確認するため,白色光と近赤外光を照射光として用いた際の手掌部マルチスペクトル画像から緑色光画素と近赤外光画素によるIPGデータをそれぞれ取得し,これに周波数スペクトル解析を行って脈動成分を抽出した後,手掌領域内における脈動強度の空間分布を計算した.3人の被験者に対して分析を行った結果,先行研究と同様に,脈動が強く現れる箇所とそうでない箇所が存在し,特に緑色光画素における脈動強度分布において個人毎に異なるパターンが生じることを確認した. 次に,このIPG脈動強度分布パターンに認証として活用できる情報が含まれているか否かを調査するため,生体認証の基本要件である「普遍性」に着目して検証実験を実施した.実験では,複数の被験者から日付や時間帯を変えた場合のIPGを取得し,前述の脈動強度分布を求めた.その結果,測定回によらず,同一被験者の脈動強度分布では特に強い相関がみられることが確認された.

  5. イメージプレチスモグラムによる血管状態推定を用いた動脈紋認証に関する基礎的研究

    杉田 典大, 八巻 俊輔, 湯田 恵美, 市地 慶

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 基盤研究(B)

    Category: 基盤研究(B)

    Institution: 東北大学

    2021/04/01 - 2025/03/31

    More details Close

    本研究では,映像から得られる脈動情報であるイメージプレチスモグラム(IPG)の生成パターンが皮下の動脈走行状態によって決まるという仮説のもと,身体の各部位でみられるIPG生成パターンに基づいて個人認証を行う「動脈紋」認証の手法を確立することを目指している.本研究課題では,この「動脈紋」抽出に関する基礎的技術を確立すると共に,その認証精度について検証を行う.従来の生体認証が主に静止画像から捉えられる身体的特徴を用いるのに対し,本提案手法では経時的変化を伴うIPGの生成パターンから得られる身体的特徴を用いており,偽造が極めて困難であると考えられる. 初年度にあたる今年度は,先行研究で報告されている,手掌部において得られるIPGで生じる特異的な脈動領域である「ホットスポット」の存在を確認するため,白色光と近赤外光を照射光として用いた際の手掌部マルチスペクトル画像から緑色光画素と近赤外光画素によるIPGデータをそれぞれ取得し,これに周波数スペクトル解析を行って脈動成分を抽出した後,手掌領域内における脈動強度の空間分布を計算した.3人の被験者に対して分析を行った結果,先行研究と同様に,脈動が強く現れる箇所とそうでない箇所が存在し,特に緑色光画素における脈動強度分布において個人毎に異なるパターンが生じることを確認した. 次に,このIPG脈動強度分布パターンに認証として活用できる情報が含まれているか否かを調査するため,生体認証の基本要件である「普遍性」に着目して検証実験を実施した.実験では,複数の被験者から日付や時間帯を変えた場合のIPGを取得し,前述の脈動強度分布を求めた.その結果,測定回によらず,同一被験者の脈動強度分布では特に強い相関がみられることが確認された.

  6. Development of radiomics-based pulmonary ventilation imaging

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)

    Category: Grant-in-Aid for Scientific Research (C)

    Institution: Tohoku University

    2019/04/01 - 2022/03/31

  7. Development of a Personalized Bio-feedback System to Stabilize Respiration-induced Motion for Improving Predictive Beam Control of Tumor-following Radiation Therapy

    ICHIJI Kei

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Early-Career Scientists

    Category: Grant-in-Aid for Early-Career Scientists

    Institution: Tohoku University

    2018/04/01 - 2022/03/31

    More details Close

    Breathing guidance systems that can lead breathing motion to the desired state have clinically been used for accurately irradiating tumors moving with respiratory motion. However, the current breathing guiding systems often fail to lead the breathing motion to the desired/predictable states, and the irradiation accuracy and efficiency are not assured well in such cases. This study developed a new breathing guiding system by introducing an external controller that is designed to improve the control characteristics of the breathing guidance for increasing the predictability, or reproducibility, of the breathing motion state. According to the experimental evaluation results, the new system can reduce the deviation of the actual breathing motion from the desired/predictable breathing state. Thus, the system has the potential to achieve more effective breathing guidance.

  8. 呼吸性配置変動の予測に基づくリアルタイム適応放射線治療に関する研究

    市地 慶

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 特別研究員奨励費

    Category: 特別研究員奨励費

    Institution: 東北大学

    2015/04/24 - 2018/03/31

    More details Close

    本研究では,汎用リニアックによるDynamic multi-leaf collimator(DMLC)による,肺がんをはじめとした体内臓器移動を伴う腫瘍への追尾照射放射線治療の実用化推進と,既存の追尾照射を発展させ,動体腫瘍に対するリアルタイムな適応放射線治療のための技術開発を目的としている.DMLCによるリアルタイム適応照射実現には,標的である腫瘍のみならず,体内の組織・構造の位置・範囲を計測することが不可欠である.また,画像計測や機械駆動で生じる遅れの影響を補償するため,DMLCは予測的に制御する必要がある.そのため,(1)多次元情報に基づく体内組織・構造配置の超高精度予測アルゴリズムの開発と(2)動体追尾に対応したDMLCの動的制御に関する検討を進めている. 本年度は,これまでに臨床で取得されたkV X線透視像およびMV X線透視像に写る体内腫瘍の座標・範囲を手動計測するソフトウェアを開発し,呼吸性変動の解析を進め,これを真値として用いて体内組織・構造配置の画像計測アルゴリズムの開発を継続した.また,近年開発されたDMLCシミュレータ上で,提案している適応的時変季節性自己回帰モデルに基づくDMLC予測制御のシミュレーション評価を実施し,提案法によるDMLC予測制御が,競合する予測法を用いた場合と比べて正確な動体追尾性能および線量分布を達成可能であることを確認した.このほか,DMLCの動的制御に向けては,汎用リニアック実機を用いてMLC制御特性を同定するための実験を行った.さらに昨年度より先行して開始していたDMLCによる追尾照射の線量シミュレーションを発展し,照射中の腫瘍位置・範囲変動を考慮した線量分布シミュレーション手法の開発にも取り組んだ.この手法は,従来は定性的あるいは実験的に評価されてきた,追尾照射に要する照射時間の定量的な評価を可能とするものである.

  9. Establishment of completely new motion tracking prediction model using body surface myoelectric potential change

    Akimoto Hiroyoshi, Hirose Katsumi, Takai Yoshihiro, Honma Noriyasu, Ichiji Kei

    Offer Organization: Japan Society for the Promotion of Science

    System: Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (B)

    Category: Grant-in-Aid for Young Scientists (B)

    Institution: Hirosaki University

    2014/04/01 - 2017/03/31

    More details Close

    In order to construct a system to improve the accuracy of radiotherapy for lung malignant tumors, we conducted a study to predict lung motion by measuring electrical signals of respiratory muscles on chest surface. The movement of lung was measured with a fluoroscopic image and the signal of respiratory muscles was measured by placing the electrode of the electromyogrammeter on chest surface, and the relationship between the two was analyzed. The results showed that the electric signals of respiratory muscles contain noise, and we could not construct a system that detects the electrical signal of respiratory muscles prior to respiratory movement. It seems that the system construction required more data volume than that was considered necessary at the time of research planning.

  10. 腫瘍位置変動の時変予測モデルに基づく超高精度追尾放射線照射法に関する研究

    市地 慶

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 特別研究員奨励費

    Category: 特別研究員奨励費

    Institution: 東北大学

    2011 - 2013

    More details Close

    本研究の目的は, 正確かつ高精度な肺腫瘍位置変動予測に基づく, 呼吸性移動を伴う肺腫瘍への汎用放射線治療装置による追尾照射の実用化である. 汎用放射線治療装置の多くは, 体内腫瘍位置の計測手段としてX線透視装置, そしてビーム照射範囲の動的な制御手段としてマルチリーフコリメータとを備えている. これらを活用することで, リアルタイムな腫瘍位置計測とそれに基づく適応的な照射範囲制御による追尾照射の実現が期待される. しかし, 計測から照射制御の完了までには, 最大数百ミリ秒程度の処理時間が必要であり, この間にも腫瘍は移動を続ける. この照射の遅れを補償し追尾照射を実現するためには, 正確・高精度な腫瘍位置の未来予測の開発が不可欠である. 本年度は, これまでに提案している適応的時変季節性自己回帰(adaptive time-varying seasonal autoregressive)モデルに基づく肺腫瘍位置予測法の信頼性を検証するため, 300例を超える大規模な臨床データセットを用いての予測実験を進め, サポートベクター回帰やウェーブレット分解に基づく線形適応フィルタなど, 複数の最新肺腫瘍位置予測法との性能比較を行った. その結果, 提案法である適応的TVSARモデルは, 数十ミリ秒先の予測においては, 他の予測法のうち最良のものに匹敵し, また数百ミリ秒先の予測では最小の平均予測誤差を達成することが確認された. この結果は, 適応的TVSARモデルが世界トップクラスの肺腫瘍位置予測性能を有することを示唆するものである. また, 適応的TVSARを実装した評価用ソフトウェアが医療機器メーカによって試験された結果, メーカ側実装の手法よりも高い予測性能が認められるなど, 実用化に向けて, 更なる進展も得られた. このほか, TVSARモデルを含めた複数予測法の結果を混合する手法を提案し, これによって予測性能をさらに高めることが可能であることを示した.

Show all Show first 5

Teaching Experience 9

  1. Information and data literacy Tohoku University, School of Health Sciences, School of Medicine, Faculty of Medicine

  2. 医用画像工学特論 東北大学大学院医学系研究科

  3. 医用情報科学演習Ⅰ 東北大学医学部保健学科放射線技術科学専攻

  4. 医用電気回路学 東北大学医学部保健学科放射線技術科学専攻

  5. Experiments on fundamentals of automatic control engineering Tohoku University

  6. Experiments on fundamentals of electrical engineering Tohoku University

  7. 情報基礎A 東北大学医学部保健学科

  8. Fundamentals of digital information technologies Tohoku University

  9. Student Experiment B: B-1 Fundamentals in Computer Tohoku University

Show all Show first 5