Details of the Researcher

PHOTO

Keisuke Sakaguchi
Section
Graduate School of Information Sciences
Job title
Associate Professor
Degree
  • Ph.D.(Johns Hopkins University)

  • 修士(工学)(奈良先端科学技術大学院大学)

  • M.A.(University of Essex)

Research History 8

  • 2022/07 - Present
    Tohoku University Associate Professor

  • 2018/08 - 2022/06
    Allen Institute for Artificial Intelligence Research Scientist

  • 2013/08 - 2018/08
    Johns Hopkins University Research Assistant

  • 2022/09 - Present
    RIKEN Center for Advanced Intelligence Project (AIP) Visiting researcher

  • 2017/05 - 2017/08
    IBM T.J. Watson Research Center Research Intern

  • 2014/05 - 2014/08
    Educational Testing Service (ETS) Research Intern

  • 2012/08 - 2012/11
    Microsoft Research Asia Research Intern

  • 2011/08 - 2011/09
    Yahoo! Japan 研究所 インターン

Show all Show first 5

Education 4

  • Johns Hopkins University Department of Computer Science Ph.D in Computer Science

    2013/08 - 2018/08

  • Nara Institute of Science and Technology

    2011/04 - 2013/03

  • University of Essex Department of Language and Linguistics MA in Psycholinguistics and Neurolinguistics

    2005/10 - 2006/09

  • Waseda University School of Letters, Arts and Sciences I Philosophy

    2001/04 - 2005/03

Committee Memberships 14

  • AAAI Conference on Artificial Intelligence Program Committee

    2020 - Present

  • Conference on Computational Natural Language Learning (CoNLL) Program Committee

    2019 - Present

  • International Joint Conferences on Artificial Intelligence (IJCAI) Senior Program Committee

    2019 - Present

  • Transactions of the Association for Computational Linguistics (TACL) Program Committee

    2019 - Present

  • Workshop on Noisy User-generated Text (W-NUT) Program Committee

    2018 - Present

  • Annual Meeting of the North American Chapter of the ACL (NAACL) Program Committee

    2018 - Present

  • Annual Meeting of the Association for Computational Linguistics (ACL) Program Committee

    2018 - Present

  • Computational Linguistics Journal Program Committee

    2018 - Present

  • International Joint Conference on Natural Language Processing (IJCNLP) Program Committee

    2017 - Present

  • Conference on Empirical Methods on Natural Language Processing (EMNLP) Program Committee

    2015 - Present

  • Workshop on Innovative Use of NLP for Building Educational Applications (BEA) Program Committee

    2013 - Present

  • International Conference on Spoken Language Translation (IWSLT) Program Committee

    2020 - 2020

  • International Conference on Computational Linguistics (COLING) Program Committee

    2014 - 2020

  • Methods for Optimizing and Evaluating Neural Language Generation (NeuralGen) Program Committee

    2019 - 2019

Show all ︎Show first 5

Research Interests 2

  • Artificial Intelligence

  • Natural Language Processing

Research Areas 1

  • Informatics / Intelligent informatics / Natural Language Processing

Awards 6

  1. 言語処理学会第30回年次大会 優秀賞

    2024/03 言語処理学会 長文生成の多面的評価:人手評価と自動評価の向上を目指して

  2. Best Paper Award

    2023 AACL-IJCNLP Student Research Workshop

  3. 言語処理学会第28回年次大会 優秀賞

    2022/03 言語処理学会 論述リビジョンのためのメタ評価基盤

  4. AAAI 2020 Outstanding Paper Award (Best Paper)

    2020/02 AAAI (Association for the Advancement of Artificial Intelligence) WinoGrande: An Adversarial Winograd Schema Challenge at Scale

  5. ACL 2017 Outstanding Paper Award

    2017/08 Association for Computational Linguistics (ACL) Error-repair Dependency Parsing for Ungrammatical Texts

  6. 言語処理学会 論文賞

    2017 言語処理学会 Phrase Structure Annotation and Parsing for Learner English

Show all ︎Show 5

Papers 52

  1. An Empirical Investigation of Machines' Capabilities for Moral Judgment with the Delphi Experiment Peer-reviewed

    Liwei Jiang, Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jenny Liang, Jesse Dodge, Keisuke Sakaguchi, Maxwell Forbes, Jon Borchard, Saadia Gabriel, Yulia Tsvetkov, Oren Etzioni, Maarten Sap, Regina Rini, Yejin Choi

    Nature Machine Intelligence 2025/01

  2. RealTime QA: What's the Answer Right Now? Peer-reviewed

    Jungo Kasai, Keisuke Sakaguchi, Yoichi Takahashi, Ronan Le Bras, Akari Asai, Xinyan Yu, Dragomir Radev, Noah A. Smith, Yejin Choi, Kentaro Inui

    NeurIPS 2023

  3. I2D2: Inductive Knowledge Distillation with NeuroLogic and Self-Imitation. Peer-reviewed

    Chandra Bhagavatula, Jena D. Hwang, Doug Downey, Ronan Le Bras 0001, Ximing Lu, Lianhui Qin, Keisuke Sakaguchi, Swabha Swayamdipta, Peter West, Yejin Choi 0001

    ACL (1) 9614-9630 2023

    DOI: 10.18653/v1/2023.acl-long.535  

  4. WinoGrande Invited Peer-reviewed

    Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi

    Communications of the ACM 64 (9) 99-106 2021/09

    Publisher: Association for Computing Machinery (ACM)

    DOI: 10.1145/3474381  

    ISSN: 0001-0782

    eISSN: 1557-7317

    More details Close

    Commonsense reasoning remains a major challenge in AI, and yet, recent progresses on benchmarks may seem to suggest otherwise. In particular, the recent neural language models have reported above 90% accuracy on the Winograd Schema Challenge (WSC), a commonsense benchmark originally designed to be unsolvable for statistical models that rely simply on word associations. This raises an important question---whether these models have truly acquired robust commonsense capabilities or they rely on spurious biases in the dataset that lead to an overestimation of the true capabilities of machine commonsense. To investigate this question, we introduce WinoGrande, a large-scale dataset of 44k problems, inspired by the original WSC, but adjusted to improve both the scale and the hardness of the dataset. The key steps of the dataset construction consist of (1) large-scale crowdsourcing, followed by (2) systematic bias reduction using a novel AFLITE algorithm that generalizes human-detectable <italic>word associations</italic> to machine-detectable <italic>embedding associations.</italic> Our experiments demonstrate that state-of-the-art models achieve considerably lower accuracy (59.4%-79.1%) on WINOGRANDE compared to humans (94%), confirming that the high performance on the original WSC was inflated by spurious biases in the dataset. Furthermore, we report new state-of-the-art results on five related benchmarks with emphasis on their dual implications. On the one hand, they demonstrate the effectiveness of WINOGRANDE when used as a resource for transfer learning. On the other hand, the high performance on all these benchmarks suggests the extent to which spurious biases are prevalent in all such datasets, which motivates further research on algorithmic bias reduction.

  5. Abductive Commonsense Reasoning. Peer-reviewed

    Chandra Bhagavatula, Ronan Le Bras, Chaitanya Malaviya, Keisuke Sakaguchi, Ari Holtzman, Hannah Rashkin, Doug Downey, Wen-tau Yih, Yejin Choi

    ICLR 2020

    Publisher: OpenReview.net

  6. Towards Automated Document Revision: Grammatical Error Correction, Fluency Edits, and Beyond.

    Masato Mita, Keisuke Sakaguchi, Masato Hagiwara, Tomoya Mizumoto, Jun Suzuki 0001, Kentaro Inui

    Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications(BEA) 251-265 2024

    Publisher: Association for Computational Linguistics

  7. J-UniMorph: Japanese Morphological Annotation through the Universal Feature Schema

    Kosuke Matsuzaki, Masaya Taniguchi, Kentaro Inui, Keisuke Sakaguchi

    Proceedings of the 21st SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology 7-19 2024

    Publisher: Association for Computational Linguistics

    DOI: 10.18653/v1/2024.sigmorphon-1.2  

  8. A Multimodal Dialogue System to Lead Consensus Building with Emotion-Displaying

    Shinnosuke Nozue, Yuto Nakano, Shoji Moriya, Tomoki Ariyama, Kazuma Kokuta, Suchun Xie, Kai Sato, Shusaku Sone, Ryohei Kamei, Reina Akama, Yuichiroh Matsubayashi, Keisuke Sakaguchi

    Proceedings of the 25th Annual Meeting of the Special Interest Group on Discourse and Dialogue 669-673 2024

    Publisher: Association for Computational Linguistics

    DOI: 10.18653/v1/2024.sigdial-1.57  

  9. How Well Do Vision Models Encode Diagram Attributes?

    Haruto Yoshida, Keito Kudo, Yoichi Aoki, Ryota Tanaka, Itsumi Saito, Keisuke Sakaguchi, Kentaro Inui

    ACL (Student Research Workshop) 564-575 2024

  10. First Heuristic Then Rational: Dynamic Use of Heuristics in Language Model Reasoning. Peer-reviewed

    Yoichi Aoki, Keito Kudo, Tatsuki Kuribayashi, Shusaku Sone, Masaya Taniguchi, Keisuke Sakaguchi, Kentaro Inui

    EMNLP 2024

    DOI: 10.48550/arXiv.2406.16078  

  11. The Curse of Popularity: Popular Entities have Catastrophic Side Effects when Deleting Knowledge from Language Models.

    Ryosuke Takahashi, Go Kamoda, Benjamin Heinzerling, Keisuke Sakaguchi, Kentaro Inui

    CoRR abs/2406.06032 2024

    DOI: 10.48550/arXiv.2406.06032  

  12. ACORN: Aspect-wise Commonsense Reasoning Explanation Evaluation. Peer-reviewed

    Ana Brassard, Benjamin Heinzerling, Keito Kudo, Keisuke Sakaguchi, Kentaro Inui

    COLM (CONFERENCE ON LANGUAGE MODELING) 2024

    DOI: 10.48550/arXiv.2405.04818  

  13. Hagi bot: A Multimodal Dialogue System for Smooth Discussion with Human-like Behavior and Dialogue State Tracking Using LLM

    NAKANO Yuto, NOZUE Shinnosuke, KOKUTA Kazuma, ARIYAMA Tomoki, SATO Kai, SONE Shusaku, KAMEI Ryohei, XIE Suchun, NARITA Fuka, MORIYA Shoji, AKAMA Reina, MATSUBAYASHI Yuichiroh, SAKAGUCHI Keisuke

    JSAI Technical Report, SIG-SLUD 99 102-107 2023/12/04

    Publisher: The Japanese Society for Artificial Intelligence

    DOI: 10.11517/jsaislud.99.0_102  

    ISSN: 0918-5682

    eISSN: 2436-4576

    More details Close

    This paper describes "hagi bot," a system submitted to the Sixth Dialogue System Live Competition. It is a task-oriented multi-modal dialogue system that integrates a response generation module and an avatar control module. Within the response generation module, GPT-4 is used to generate responses along with emotion and action labels considering the dialogue history and the topics to be discussed. Specifically, by monitoring the dialogue state through slot filling and continuously changing prompts based on the situation, the module is able to achieve a natural dialogue progression. In the avatar control module, voice (pitch, volume, and speaking speed), facial expressions, and gestures are regulated based on predefined rules designed in reference to models such as Russell's Circumplex Model of Affect, corresponding to content of speech together with emotion and action labels. This approach enables human-like natural behavior. The combination of these two modules achieves generation of responses appropriate to the situation and natural behaviors based on the content of utterances and emotions. This system won the first place in the preliminary round.

  14. Test-time Augmentation for Factual Probing.

    Go Kamoda, Benjamin Heinzerling, Keisuke Sakaguchi, Kentaro Inui

    CoRR abs/2310.17121 2023

    DOI: 10.48550/arXiv.2310.17121  

  15. Test-time Augmentation for Factual Probing. Peer-reviewed

    Go Kamoda, Benjamin Heinzerling, Keisuke Sakaguchi, Kentaro Inui

    EMNLP (Findings) 3650-3661 2023

  16. PlaSma: Making Small Language Models Better Procedural Knowledge Models for (Counterfactual) Planning. Peer-reviewed

    Faeze Brahman, Chandra Bhagavatula, Valentina Pyatkin, Jena D. Hwang, Xiang Lorraine Li, Hirona J. Arai, Soumya Sanyal 0001, Keisuke Sakaguchi, Xiang Ren 0001, Yejin Choi 0001

    ICLR (The Twelfth International Conference on Learning Representations.) abs/2305.19472 2023

    DOI: 10.48550/arXiv.2305.19472  

  17. Evaluating GPT-4 and ChatGPT on Japanese Medical Licensing Examinations.

    Jungo Kasai, Yuhei Kasai, Keisuke Sakaguchi, Yutaro Yamada, Dragomir Radev

    CoRR abs/2303.18027 2023

    DOI: 10.48550/arXiv.2303.18027  

  18. Causal schema induction for knowledge discovery.

    Michael Regan, Jena D. Hwang, Keisuke Sakaguchi, James Pustejovsky

    CoRR abs/2303.15381 2023

    DOI: 10.48550/arXiv.2303.15381  

  19. An Analysis of GPT-3's Performance in Grammatical Error Correction.

    Steven Coyne, Keisuke Sakaguchi

    CoRR abs/2303.14342 2023

    DOI: 10.48550/arXiv.2303.14342  

  20. ELQA: A Corpus of Metalinguistic Questions and Answers about English. Peer-reviewed

    Shabnam Behzad, Keisuke Sakaguchi, Nathan Schneider 0001, Amir Zeldes

    ACL (1) 2031-2047 2023

    DOI: 10.18653/v1/2023.acl-long.113  

  21. Do Deep Neural Networks Capture Compositionality in Arithmetic Reasoning? Peer-reviewed

    Keito Kudo, Yoichi Aoki, Tatsuki Kuribayashi, Ana Brassard, Masashi Yoshikawa, Keisuke Sakaguchi, Kentaro Inui

    Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics(EACL) 1343-1354 2023

    Publisher: Association for Computational Linguistics

    DOI: 10.18653/v1/2023.eacl-main.98  

  22. Empirical Investigation of Neural Symbolic Reasoning Strategies. Peer-reviewed

    Yoichi Aoki, Keito Kudo, Tatsuki Kuribayashi, Ana Brassard, Masashi Yoshikawa, Keisuke Sakaguchi, Kentaro Inui

    Findings of the Association for Computational Linguistics: EACL 2023 1124-1132 2023

    Publisher: Association for Computational Linguistics

    DOI: 10.18653/v1/2023.findings-eacl.86  

  23. Towards Automated Document Revision: Grammatical Error Correction, Fluency Edits, and Beyond.

    Masato Mita, Keisuke Sakaguchi, Masato Hagiwara, Tomoya Mizumoto, Jun Suzuki, Kentaro Inui

    CoRR abs/2205.11484 2022

    DOI: 10.48550/arXiv.2205.11484  

  24. Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand. Peer-reviewed

    Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras, Lavinia Dunagan, Jacob Morrison, Alexander R. Fabbri, Yejin Choi, Noah A. Smith

    NAACL-HLT 3540-3557 2022

  25. Transparent Human Evaluation for Image Captioning. Peer-reviewed

    Jungo Kasai, Keisuke Sakaguchi, Lavinia Dunagan, Jacob Morrison, Ronan Le Bras, Yejin Choi, Noah Smith

    NAACL-HLT 3464-3478 2022

  26. proScript: Partially Ordered Scripts Generation via Pre-trained Language Models. Peer-reviewed

    Keisuke Sakaguchi, Chandra Bhagavatula, Ronan Le Bras, Niket Tandon, Peter Clark, Yejin Choi

    EMNLP abs/2104.08251 2021

  27. (Comet-) Atomic 2020: On Symbolic and Neural Commonsense Knowledge Graphs. Peer-reviewed

    Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, Yejin Choi

    AAAI 6384-6392 2021

    Publisher: AAAI Press

  28. The Universal Decompositional Semantics Dataset and Decomp Toolkit. Peer-reviewed

    Aaron Steven White, Elias Stengel-Eskin, Siddharth Vashishtha, Venkata Subrahmanyan Govindarajan, Dee Ann Reisinger, Tim Vieira, Keisuke Sakaguchi, Sheng Zhang 0012, Francis Ferraro, Rachel Rudinger, Kyle Rawlins, Benjamin Van Durme

    LREC 5698-5707 2020

    Publisher: European Language Resources Association

  29. A Dataset for Tracking Entities in Open Domain Procedural Text. Peer-reviewed

    Niket Tandon, Keisuke Sakaguchi, Bhavana Dalvi, Dheeraj Rajagopal, Peter Clark, Michal Guerquin, Kyle Richardson 0001, Eduard H. Hovy

    EMNLP 6408-6417 2020

    Publisher: Association for Computational Linguistics

    DOI: 10.18653/v1/2020.emnlp-main.520  

  30. Uncertain Natural Language Inference. Peer-reviewed

    Tongfei Chen, Zhengping Jiang, Adam Poliak, Keisuke Sakaguchi, Benjamin Van Durme

    ACL 8772-8779 2020

    Publisher: Association for Computational Linguistics

    DOI: 10.18653/v1/2020.acl-main.774  

  31. WinoGrande: An Adversarial Winograd Schema Challenge at Scale. Peer-reviewed

    Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi

    AAAI 8732-8740 2020

    Publisher: AAAI Press

  32. WIQA: A dataset for "What if..." reasoning over procedural text. Peer-reviewed

    Niket Tandon, Bhavana Dalvi, Keisuke Sakaguchi, Peter Clark, Antoine Bosselut

    EMNLP 6075-6084 2019

    Publisher: Association for Computational Linguistics

    DOI: 10.18653/v1/D19-1629  

  33. Efficient Online Scalar Annotation with Bounded Support. Peer-reviewed

    Keisuke Sakaguchi, Benjamin Van Durme

    ACL 208-218 2018

    Publisher: Association for Computational Linguistics

    DOI: 10.18653/v1/P18-1020  

  34. Grammatical Error Correction with Neural Reinforcement Learning. Peer-reviewed

    Keisuke Sakaguchi, Matt Post, Benjamin Van Durme

    IJCNLP 366-372 2017

    Publisher: Asian Federation of Natural Language Processing

  35. JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction. Peer-reviewed

    Courtney Napoles, Keisuke Sakaguchi, Joel R. Tetreault

    EACL 229-234 2017

    Publisher: Association for Computational Linguistics

    DOI: 10.18653/v1/e17-2037  

  36. GEC into the future: Where are we going and how do we get there? Peer-reviewed

    Keisuke Sakaguchi, Courtney Napoles, Joel R. Tetreault

    BEA 180-187 2017

    Publisher: Association for Computational Linguistics

    DOI: 10.18653/v1/w17-5019  

  37. Error-repair Dependency Parsing for Ungrammatical Texts. Peer-reviewed

    Keisuke Sakaguchi, Matt Post, Benjamin Van Durme

    ACL 189-195 2017

    Publisher: Association for Computational Linguistics

    DOI: 10.18653/v1/P17-2030  

  38. Robsut Wrod Reocginiton via Semi-Character Recurrent Neural Network. Peer-reviewed

    Keisuke Sakaguchi, Kevin Duh, Matt Post, Benjamin Van Durme

    AAAI 3281-3287 2017

    Publisher: AAAI Press

  39. Reassessing the Goals of Grammatical Error Correction: Fluency Instead of Grammaticality Peer-reviewed

    Keisuke Sakaguchi, Courtney Napoles, Matt Post, Joel Tetreault

    Transactions of the Association for Computational Linguistics 4 169-182 2016/12

    Publisher: MIT Press - Journals

    DOI: 10.1162/tacl_a_00091  

    eISSN: 2307-387X

    More details Close

    The field of grammatical error correction (GEC) has grown substantially in recent years, with research directed at both evaluation metrics and improved system performance against those metrics. One unvisited assumption, however, is the reliance of GEC evaluation on error-coded corpora, which contain specific labeled corrections. We examine current practices and show that GEC’s reliance on such corpora unnaturally constrains annotation and automatic evaluation, resulting in (a) sentences that do not sound acceptable to native speakers and (b) system rankings that do not correlate with human judgments. In light of this, we propose an alternate approach that jettisons costly error coding in favor of unannotated, whole-sentence rewrites. We compare the performance of existing metrics over different gold-standard annotations, and show that automatic evaluation with our new annotation scheme has very strong correlation with expert rankings (ρ = 0.82). As a result, we advocate for a fundamental and necessary shift in the goal of GEC, from correcting small, labeled error types, to producing text that has native fluency.

  40. GLEU Without Tuning.

    Courtney Napoles, Keisuke Sakaguchi, Matt Post, Joel R. Tetreault

    CoRR abs/1605.02592 2016

  41. There's No Comparison: Reference-less Evaluation Metrics in Grammatical Error Correction. Peer-reviewed

    Courtney Napoles, Keisuke Sakaguchi, Joel R. Tetreault

    EMNLP 2109-2115 2016

    Publisher: The Association for Computational Linguistics

    DOI: 10.18653/v1/d16-1228  

  42. Universal Decompositional Semantics on Universal Dependencies. Peer-reviewed

    Aaron Steven White, Drew Reisinger, Keisuke Sakaguchi, Tim Vieira, Sheng Zhang 0012, Rachel Rudinger, Kyle Rawlins, Benjamin Van Durme

    EMNLP 1713-1723 2016

    Publisher: The Association for Computational Linguistics

    DOI: 10.18653/v1/d16-1177  

  43. Phrase Structure Annotation and Parsing for Learner English. Peer-reviewed

    Ryo Nagata, Keisuke Sakaguchi

    ACL 2016

    Publisher: The Association for Computer Linguistics

    DOI: 10.18653/v1/p16-1173  

  44. Effective Feature Integration for Automated Short Answer Scoring. Peer-reviewed

    Keisuke Sakaguchi, Michael Heilman, Nitin Madnani

    NAACL 1049-1054 2015

    Publisher: The Association for Computational Linguistics

    DOI: 10.3115/v1/n15-1111  

  45. Ground Truth for Grammaticality Correction Metrics. Peer-reviewed

    Courtney Napoles, Keisuke Sakaguchi, Matt Post, Joel R. Tetreault

    ACL 588-593 2015

    Publisher: The Association for Computer Linguistics

    DOI: 10.3115/v1/p15-2097  

  46. Efficient Elicitation of Annotations for Human Evaluation of Machine Translation. Peer-reviewed

    Keisuke Sakaguchi, Matt Post, Benjamin Van Durme

    WMT 1-11 2014

    Publisher: The Association for Computer Linguistics

    DOI: 10.3115/v1/w14-3301  

  47. Construction of English MWE Dictionary and its Application to POS Tagging. Peer-reviewed

    Yutaro Shigeto, Ai Azuma, Sorami Hisamoto, Shuhei Kondo, Tomoya Kouse, Keisuke Sakaguchi, Akifumi Yoshimoto, Frances Yung, Yuji Matsumoto 0001

    MWE 139-144 2013

    Publisher: The Association for Computer Linguistics

  48. NAIST at 2013 CoNLL Grammatical Error Correction Shared Task.

    Ippei Yoshimoto, Tomoya Kose, Kensuke Mitsuzawa, Keisuke Sakaguchi, Tomoya Mizumoto, Yuta Hayashibe, Mamoru Komachi, Yuji Matsumoto 0001

    Proceedings of the Seventeenth Conference on Computational Natural Language Learning: Shared Task 26-33 2013

    Publisher: ACL

  49. NAIST at the NLI 2013 Shared Task.

    Tomoya Mizumoto, Yuta Hayashibe, Keisuke Sakaguchi, Mamoru Komachi, Yuji Matsumoto 0001

    Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications(BEA@NAACL-HLT) 134-139 2013

    Publisher: The Association for Computer Linguistics

  50. Discriminative Approach to Fill-in-the-Blank Quiz Generation for Language Learners. Peer-reviewed

    Keisuke Sakaguchi, Yuki Arase, Mamoru Komachi

    ACL 238-242 2013

    Publisher: The Association for Computer Linguistics

  51. Joint English Spelling Error Correction and POS Tagging for Language Learners Writing. Peer-reviewed

    Keisuke Sakaguchi, Tomoya Mizumoto, Mamoru Komachi, Yuji Matsumoto 0001

    COLING 2357-2374 2012

    Publisher: Indian Institute of Technology Bombay

  52. NAIST at the HOO 2012 Shared Task.

    Keisuke Sakaguchi, Yuta Hayashibe, Shuhei Kondo, Lis Kanashiro, Tomoya Mizumoto, Mamoru Komachi, Yuji Matsumoto 0001

    Proceedings of the Seventh Workshop on Building Educational Applications Using NLP(BEA@NAACL-HLT) 281-288 2012

    Publisher: The Association for Computer Linguistics

Show all ︎Show first 5

Misc. 12

  1. 自然画像で学習された画像埋め込みにダイアグラムを特徴づける情報は含まれているか?

    吉田遥音, 工藤慧音, 工藤慧音, 青木洋一, 青木洋一, 田中涼太, 田中涼太, 斉藤いつみ, 坂口慶祐, 坂口慶祐, 乾健太郎, 乾健太郎, 乾健太郎

    言語処理学会年次大会発表論文集(Web) 30th 2024

    ISSN: 2188-4420

  2. Towards grammatically-informed feedback comments

    GALVAN-SOSA Diana, COYNE Steven, SAKAGUCHI Keisuke, INUI Kentaro, GALVAN-SOSA Diana, COYNE Steven, SAKAGUCHI Keisuke, INUI Kentaro

    言語処理学会年次大会発表論文集(Web) 29th 2023

    ISSN: 2188-4420

  3. 因果的プロンプトによるNLIの敵対的ロバスト性の強化

    KAVUMBA Pride, KAVUMBA Pride, BRASSARD Ana, BRASSARD Ana, HEINZERLING Benjamin, HEINZERLING Benjamin, 坂口慶祐, 坂口慶祐, 乾健太郎, 乾健太郎

    言語処理学会年次大会発表論文集(Web) 29th 2023

    ISSN: 2188-4420

  4. ニューラル記号推論における推論過程の教示方法

    青木洋一, 工藤慧音, BRASSARD Ana, BRASSARD Ana, 栗林樹生, 栗林樹生, 吉川将司, 坂口慶祐, 坂口慶祐, 乾健太郎, 乾健太郎

    言語処理学会年次大会発表論文集(Web) 29th 2023

    ISSN: 2188-4420

  5. 算術問題におけるニューラルモデルの構成的推論能力

    工藤慧音, 青木洋一, 栗林樹生, 栗林樹生, BRASSARD Ana, BRASSARD Ana, 吉川将司, 坂口慶祐, 坂口慶祐, 乾健太郎, 乾健太郎

    言語処理学会年次大会発表論文集(Web) 29th 2023

    ISSN: 2188-4420

  6. 大規模言語モデルにおける暗黙の推論生成能力の評価

    根岸直生, 坂口慶祐, 乾健太郎, 坂口慶祐, 乾健太郎

    情報科学技術フォーラム講演論文集 22nd 2023

  7. 論述リビジョンのためのメタ評価基盤

    三田雅人, 坂口慶祐, 萩原正人, 萩原正人, 水本智也, 水本智也, 鈴木潤, 鈴木潤, 乾健太郎, 乾健太郎

    言語処理学会年次大会発表論文集(Web) 28th 2022

    ISSN: 2188-4420

  8. 英語学習者コーパスのための句構造アノテーション

    永田亮, 坂口慶祐

    言語処理学会年次大会発表論文集(Web) 21st 2015

    ISSN: 2188-4420

  9. Construction of English Multiword Dictionary and its Application to POS Tagging

    Yutaro Shigeto, Ai Azuma, Shuhei Kondo, Ryuta Kitaura, Keisuke Sakaguchi, Tomoya Kose, Sorami Hisamoto, Akifumi Yoshimoto, Frances Yung, Yuji Matsumoto

    IPSJ SIG Notes 2012 (7) 1-6 2012/11/15

    Publisher: Information Processing Society of Japan (IPSJ)

    More details Close

    Many previous studies have proposed various methods for English Part-Of-Speech (POS) tagging, and these methods have been shown to give high accuracy. However POS tagging in these previous methods are only on each word, and they cannot tag on multiword expressions consisting of multiple lexical items, such as collocations. In this research we constructed a multiword expression dictionary, and we used variable length CRF to conduct POS tagging which takes into consideration the multiword expressions. We, then, evaluated the tagging accuracy and the multiword recognition accuracy. In result, the tagger with the multiword dictionary achieved higher accuracy compared with the tagger which does not consider multiword expressions.

  10. Joint Learning of English Spelling Error Correction and POS Tagging

    Keisuke Sakaguchi, Tomoya Mizumoto, Mamoru Komachi, Yuji Matsumoto

    IPSJ SIG Notes 2012 (8) 1-7 2012/05/03

    Publisher: Information Processing Society of Japan (IPSJ)

    More details Close

    Automated grammatical error detection and correction tasks for the second language (L2) learners writing of English have become more important in recent years. L2 writing contains not only grammatical errors but also other types of errors such as misspelling and punctuation errors. These `ungrammatical' errors often disturb part-of-speech (POS) tagging and dependency parsing, resulting in an obstacle for grammatical error detection and correction tasks. Spelling error correction and POS tagging have been studied independently but in recent years joint learning of related tasks has been successful in improving NLP pipeline processing. In this paper, we propose a joint learning approach to English spelling error correction and POS tagging. The experimental result shows that the proposed method can correct spelling errors and label POS tags simultaneously for L2 writing as well or better than applying each method independently.

  11. 英作文誤り訂正における複数の手法の利用に関する考察

    水本智也, 林部祐太, 坂口慶祐, 小町守, 松本裕治

    情報処理学会研究報告(CD-ROM) 2012 (3) 2012

    ISSN: 2186-2583

  12. オークション検索クリックスルーログからの属性値抽出

    水本智也, 坂口慶祐, 小町守, 内海慶, 河野洋志, 前澤敏之, 佐藤敏紀

    言語処理学会年次大会発表論文集 18th (CD-ROM) 2012

Show all ︎Show first 5

Presentations 23

  1. RealTime QA: What's the Answer Right Now? Invited

    Keisuke Sakaguchi

    2023 BrainLink X-Lab Day, Korean Federation of Science and Technology Societies (KOFST), Republic of Korea 2023/12/03

  2. ChatGPTにできること・できないこと (得意なこと・不得意なこと) Invited

    坂口慶祐

    言語処理学会 言語処理技術セミナー 2023/10/30

  3. 自然言語処理 Invited

    坂口慶祐

    大阪大学基礎工学部・生物工学特論 2023/10/20

  4. 人間とAIの対話:ChatGPTがもたらす変革と課題 Invited

    坂口慶祐

    第11回岡山大学AI研究会 2023/09/13

  5. 人間とAIの対話:ChatGPTがもたらす変革と課題 Invited

    坂口慶祐

    学術変革領域 A「尊厳学の確立:尊厳概念に基づく社会統合の学際的パラダイムの構築に向けて」 尊厳学フォーラム 第3回 B04 班シンポジウム「生成 AI と尊厳」 東京大学,東京 2023/09/10

  6. Twist Decoding: Diverse Generators Guide Each Other Invited

    Keisuke Sakaguchi

    CWRU-TOHOKU Joint Workshop, Sendai, Japan 2023/08/07

  7. ことばの不思議と人工知能 Invited

    坂口慶祐

    河合塾 知の広場,仙台 2023/07/28

  8. 人間とAIの対話: ChatGPTがもたらす変革と課題 Invited

    坂口慶祐

    秋桜会, 仙台 2023/07/19

  9. GPT4と大規模言語モデルおよびその応用 Invited

    坂口慶祐

    JTC オンラインセミナー 2023/07/07

  10. Large Language Models: What is happening now? Invited

    Keisuke Sakaguchi

    Sungkyunkwan University, Republic of Korea (online) 2023/04/05

  11. Large Language Models: What will happen next? Invited

    坂口慶祐

    産業技術総合研究所 人工知能研究センター,東京 2023/01/23

  12. Large Language Models: What will happen next? Invited

    Keisuke Sakaguchi

    2022 BrainLink X-Lab Day, Korean Federation of Science and Technology Societies (KOFST), Republic of Korea 2022/10/25

  13. Large Language Models: What will happen next? Invited

    Keisuke Sakaguchi

    AIST AI Research Center, Japan 2022/09/27

  14. Large Language Models: What will happen next? Invited

    坂口慶祐

    東京大学 松尾研究室,東京 2022/08/23

  15. Robust Text Correction for Grammar and Fluency Invited

    Keisuke Sakaguchi

    Microsoft Research, Redmond, WA 2018/09/27

  16. Robust Text Correction for Grammar and Fluency Invited

    Keisuke Sakaguchi

    Allen Institute for Artificial Intelligence, Seattle, WA 2018/03/30

  17. Grammatical Error Correction with Neural Reinforcement Learning Invited

    Keisuke Sakaguchi

    Grammarly Research, Online 2018/02/22

  18. Robust Text Correction for Grammar and Fluency Invited

    Keisuke Sakaguchi

    Amazon Research, Boston, MA 2018/02/09

  19. 文法および流暢性を考慮した頑健なテキスト誤り訂正 Invited

    坂口慶祐

    千葉工業大学ステアラボ人工知能セミナー, 東京 2017/12/14

  20. Robust Natural Language Processing Invited

    坂口慶祐

    NTTコミュニケーション科学研究所, 京都 2017/12/12

  21. Robust Natural Language Processing Invited

    坂口慶祐

    東北大学 乾・岡崎研究室, 仙台 2017/12/08

  22. Robust Natural Language Processing Invited

    坂口慶祐

    首都大学東京 小町研究室, 東京 2017/12/05

  23. Evaluating SMT evaluation Invited

    Keisuke Sakaguchi

    Rakuten Institute of Technology, NY 2013/11/27

Show all Show first 5

Research Projects 1

  1. 現実世界の逐次的環境変化に協調的に適応するマルチモーダル自然言語理解モデル

    坂口 慶祐

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業

    Category: 国際共同研究加速基金(帰国発展研究)

    Institution: 東北大学

    2022/02/18 - 2025/03/31

    More details Close

    現代社会において、人間とAIによる自然なインタラクションや協働を可能にするためには、ユーザーの文脈を考慮し柔軟に対応できる自然言語処理モデルが必要不可欠である。このようなモデルは、ユーザーのニーズに応じた対話を可能にし、AIとユーザー間のコミュニケーションのをより円滑にすると考えられる。 しかし、現時点では「静的な文脈のみを必要とするベンチマーク上での高い精度と、動的な文脈が重要になるアプリケーションでの低い精度とのギャップ」が問題となっている。つまり、一方ではAIは一定の文脈におけるパフォーマンスを向上させる一方で、より広範で複雑な状況に対応する能力にはまだ限界があることが確認されている。 その解決策として、本研究課題では現実世界のように常に状況や文脈が変化する環境に対応可能なマルチモーダルモデルを提案する。このモデルは、言語情報だけでなく、視覚情報、聴覚情報を統合的かつ逐次的に学習する能力を持つ。これにより、AIはユーザーの現在の状況をより深く理解し、それに基づいた適切な対応を提供することが可能となる。 着任の2022年8月より開始した今年度は、前半に実験環境の構築やシステム開発に向けた関連研究のサーベイ、それらの再現実験、本研究課題において最終的に必要となる、数量推論や知識推論、ユーザーフィードバック生成に関わる深層学習モデルの研究開発を行い、後半以降ではそれらの成果の研究発表(国際会議採択件数3件、国内会議6件、招待講演4件)、および次年度に向けたマルチモーダルモデルのサーベイ、再現実験を開始した。