Details of the Researcher

PHOTO

Hikari Matsumoto
Section
Graduate School of Life Sciences
Job title
Assistant Professor
Degree

Research History 1

  • 2021/05 - Present
    Tohoku University Graduate School of Life Sciences

Papers 12

  1. A simple and versatile plasma membrane staining method for visualizing living cell morphology in reproductive tissues across diverse plant species

    Yuga Hanaki, Hidemasa Suzuki, Sohta Nakamura, Sakumi Nakagawa, Keigo Tada, Hikari Matsumoto, Yusuke Kimata, Yoshikatsu Sato, Minako Ueda

    2025/06/17

    DOI: 10.1101/2025.06.11.659190  

  2. Agent-Based Simulation of Cortical Microtubule Band Movement in Arabidopsis Zygotes

    Tomonobu Nonoyama, Zichen Kang, Hikari Matsumoto, Sakumi Nakagawa, Minako Ueda, Satoru Tsugawa

    2024/10/18

    DOI: 10.1101/2024.10.17.618799  

  3. Temporal changes in surface tension guide the accurate asymmetric division of Arabidopsis zygotes

    Zichen Kang, Sakumi Nakagawa, Hikari Matsumoto, Yukitaka Ishimoto, Tomonobu Nonoyama, Yuga Hanaki, Satoru Tsugawa, Minako Ueda

    2024/08/09

    DOI: 10.1101/2024.08.07.605794  

    More details Close

    <jats:title>Abstract</jats:title><jats:p>In most plants, the zygote divides asymmetrically to define the body axis. In<jats:italic>Arabidopsis thaliana</jats:italic>, the zygote undergoes polar elongation maintaining a transverse band of cortical microtubules (MTs), and divides asymmetrically forming another MT band, preprophase band (PPB). How the MT band is maintained at the actively growing cell tip and whether it contributes to PPB formation remain elusive. By combining live-cell imaging and mechanical simulation, we show that zygote elongation induces a temporal change (large material derivative) in surface tension at the growing tip to maintain the MT band, which in turn supports polar elongation. The MT band then guides PPB to determine the cell division site. Therefore, autonomous mechanical feedback between cell elongation and MT organization ensures the zygote division asymmetry.</jats:p>

  4. A viscoelastic–plastic deformation model of hemisphere-like tip growth in Arabidopsis zygotes Peer-reviewed

    Zichen Kang, Tomonobu Nonoyama, Yukitaka Ishimoto, Hikari Matsumoto, Sakumi Nakagawa, Minako Ueda, Satoru Tsugawa

    Quantitative Plant Biology 2024/07/19

    DOI: 10.1017/qpb.2024.13  

  5. Deep learning-based cytoskeleton segmentation for accurate high-throughput measurement of cytoskeleton density

    Ryota Horiuchi, Asuka Kamimura, Yuga Hanaki, Hikari Matsumoto, Minako Ueda, Takumi Higaki

    2024/05/30

    DOI: 10.1101/2024.05.27.596126  

    More details Close

    <jats:title>Abstract</jats:title><jats:p>Microscopic analyses of cytoskeleton organization are crucial for understanding various cellular activities, including cell proliferation and environmental responses in plants. Traditionally, assessments of cytoskeleton dynamics have been qualitative, relying on microscopy-assisted visual inspection. However, the transition to quantitative digital microscopy has introduced new technical challenges, with segmentation of cytoskeleton structures proving particularly demanding. In this study, we examined the utility of a deep learning-based segmentation method for accurate quantitative evaluation of cytoskeleton organization using confocal micrographs of the cortical microtubules in tobacco BY-2 cells. The results showed that, although conventional methods sufficed for measurement of cytoskeleton angles and parallelness, the deep learning-based method significantly improved the accuracy of density measurements. To assess the versatility of the method, we extended our analysis to physiologically significant models in the context of changes in cytoskeleton density, namely<jats:italic>Arabidopsis thaliana</jats:italic>guard cells and zygotes. The deep learning-based method successfully improved the accuracy of cytoskeleton density measurements for quantitative evaluations of physiological changes in both stomatal movement in guard cells and intracellular polarization in elongating zygotes, confirming its utility in these applications. The results demonstrate the effectiveness of deep learning-based segmentation in providing precise and high-throughput measurements of cytoskeleton density, and has the potential to automate and expedite analyses of large-scale image datasets.</jats:p>

  6. Polarity establishment in the plant zygote at a glance. International-journal

    Hikari Matsumoto, Minako Ueda

    Journal of cell science 137 (5) 2024/03/01

    DOI: 10.1242/jcs.261809  

    More details Close

    The complex structures of multicellular organisms originate from a unicellular zygote. In most angiosperms, including Arabidopsis thaliana, the zygote is distinctly polar and divides asymmetrically to produce an apical cell, which generates the aboveground part of the plant body, and a basal cell, which generates the root tip and extraembryonic suspensor. Thus, zygote polarity is pivotal for establishing the apical-basal axis running from the shoot apex to the root tip of the plant body. The molecular mechanisms and spatiotemporal dynamics behind zygote polarization remain elusive. However, advances in live-cell imaging of plant zygotes have recently made significant insights possible. In this Cell Science at a Glance article and the accompanying poster, we summarize our understanding of the early steps in apical-basal axis formation in Arabidopsis, with a focus on de novo transcriptional activation after fertilization and the intracellular dynamics leading to the first asymmetric division of the zygote.

  7. Comprehensive and quantitative analysis of intracellular structure polarization at the apical-basal axis in elongating Arabidopsis zygotes. International-journal Peer-reviewed

    Yukiko Hiromoto, Naoki Minamino, Suzuka Kikuchi, Yusuke Kimata, Hikari Matsumoto, Sakumi Nakagawa, Minako Ueda, Takumi Higaki

    Scientific reports 13 (1) 22879-22879 2023/12/18

    DOI: 10.1038/s41598-023-50020-8  

    More details Close

    A comprehensive and quantitative evaluation of multiple intracellular structures or proteins is a promising approach to provide a deeper understanding of and new insights into cellular polarity. In this study, we developed an image analysis pipeline to obtain intensity profiles of fluorescent probes along the apical-basal axis in elongating Arabidopsis thaliana zygotes based on two-photon live-cell imaging data. This technique showed the intracellular distribution of actin filaments, mitochondria, microtubules, and vacuolar membranes along the apical-basal axis in elongating zygotes from the onset of cell elongation to just before asymmetric cell division. Hierarchical cluster analysis of the quantitative data on intracellular distribution revealed that the zygote may be compartmentalized into two parts, with a boundary located 43.6% from the cell tip, immediately after fertilization. To explore the biological significance of this compartmentalization, we examined the positions of the asymmetric cell divisions from the dataset used in this distribution analysis. We found that the cell division plane was reproducibly inserted 20.5% from the cell tip. This position corresponded well with the midpoint of the compartmentalized apical region, suggesting a potential relationship between the zygote compartmentalization, which begins with cell elongation, and the position of the asymmetric cell division.

  8. Coordinate Normalization of Live-Cell Imaging Data Reveals Growth Dynamics of the Arabidopsis Zygote Peer-reviewed

    Zichen Kang, Hikari Matsumoto, Tomonobu Nonoyama, Sakumi Nakagawa, Yukitaka Ishimoto, Satoru Tsugawa, Minako Ueda

    Plant and Cell Physiology 2023/03/20

    Publisher: Oxford University Press (OUP)

    DOI: 10.1093/pcp/pcad020  

    ISSN: 0032-0781

    eISSN: 1471-9053

    More details Close

    Abstract Polarization of the zygote defines the body axis during plant development. In Arabidopsis (Arabidopsis thaliana), the zygote becomes polarized and elongates in the longitudinal direction, ultimately forming the apical–basal axis of the mature plant. Despite its importance, the mechanism for this elongation remains poorly understood. Based on live-cell imaging of the zygote, we developed new image analysis methods, referred to as coordinate normalization, that appropriately fix and align positions in an image, preventing fluctuation across a temporal sequence of images. Using these methods, we discovered that the zygote elongates only at its apical tip region, similar to tip-growing cells such as pollen tubes and root hairs. We also investigated the spatiotemporal dynamics of the apical tip contour of the zygote and observed that the zygote tip retains its isotropic, hemispherical apical shape during cell elongation. By looking at the elliptical fitting of the contour over time, we further discovered that the apical cell tip becomes thinner at first and then thickens, with a transient increase in growth speed that is followed by the first cell division. We performed the same series of analyses using root hairs and established that the hemispherical tip shape and the changes in growth rate associated with changes in tip size are both specific to the zygote. In summary, the Arabidopsis zygote undergoes directional elongation as a tip-growing cell, but its tip retains an unusual isotropic shape, and the manner of growth changes with the developmental stage.

  9. Dynamic Rearrangement and Directional Migration of Tubular Vacuoles are Required for the Asymmetric Division of the Arabidopsis Zygote Peer-reviewed

    Hikari Matsumoto, Yusuke Kimata, Takumi Higaki, Tetsuya Higashiyama, Minako Ueda

    Plant and Cell Physiology 62 (8) 1280-1289 2021/06/02

    Publisher: Oxford University Press ({OUP})

    DOI: 10.1093/pcp/pcab075  

    More details Close

    In most flowering plants, the asymmetric cell division of zygotes is the initial step that establishes the apical-basal axis. In the Arabidopsis zygote, vacuolar accumulation at the basal cell end is crucial to ensure zygotic division asymmetry. Despite the importance, it was unclear whether this polar vacuolar distribution was achieved by predominant biogenesis at the basal region or by directional movement after biogenesis. Here, we found that apical and basal vacuolar contents are dynamically exchanged via a tubular vacuolar network and the vacuoles gradually migrate toward the basal end. The mutant of a vacuolar membrane protein, SHOOT GRAVITROPISM2 (SGR2), failed to form tubular vacuoles, and the mutant of a putative vacuolar fusion factor, VESICLE TRANSPORT THROUGH INTERACTION WITH T-SOLUBLE N-ETHYLMALEIMIDE-SENSITIVE FUSION PROTEIN ATTACHMENT PROTEIN RECEPTORS (SNARES) 11 (VTI11), could not flexibly rearrange the vacuolar network. Both mutants failed to exchange the apical and basal vacuolar contents and to polarly migrate the vacuoles, resulting in a more symmetric division of zygotes. Additionally, we observed that in contrast to sgr2, the zygotic defects of vti11 were rescued by the pharmacological depletion of phosphatidylinositol 3-phosphate (PI3P), a distinct phospholipid in the vacuolar membrane. Thus, SGR2 and VTI11 have individual sites of action in zygotic vacuolar membrane processes. Further, a mutant of YODA (YDA) mitogen-activated protein kinase kinase kinase, a core component of the embryonic axis formation pathway, generated the proper vacuolar network; however, it failed to migrate the vacuoles toward the basal region, which suggests impaired directional cues. Overall, we conclude that SGR2- and VTI11-dependent vacuolar exchange and YDA-mediated directional migration are necessary to achieve polar vacuolar distribution in the zygote.

  10. CURLED LATER1 encoding the largest subunit of the Elongator complex has a unique role in leaf development and meristem function in rice International-journal Peer-reviewed

    Hikari Matsumoto, Yukiko Yasui, Yoshihiro Ohmori, Wakana Tanaka, Tetsuya Ishikawa, Hisataka Numa, Kenta Shirasawa, Yojiro Taniguchi, Junichi Tanaka, Yasuhiro Suzuki, Hiro‐Yuki Hirano

    The Plant Journal 104 (2) 351-364 2020/10/31

    Publisher: Wiley

    DOI: 10.1111/tpj.14925  

    More details Close

    The Elongator complex, which is conserved in eukaryotes, has multiple roles in diverse organisms. In Arabidopsis thaliana, Elongator is shown to be involved in development, hormone action and environmental responses. However, except for Arabidopsis, our knowledge of its function is poor in plants. In this study, we initially carried out a genetic analysis to characterize a rice mutant with narrow and curled leaves, termed curled later1 (cur1). The cur1 mutant displayed a heteroblastic change, whereby the mutant leaf phenotype appeared specifically at a later adult phase of vegetative development. The shoot apical meristem (SAM) was small and the leaf initiation rate was low, suggesting that the activity of the SAM seemed to be partially reduced in cur1. We then revealed that CUR1 encodes a yeast ELP1-like protein, the largest subunit of Elongator. Furthermore, disruption of OsELP3 encoding the catalytic subunit of Elongator resulted in phenotypes similar to those of cur1, including the timing of the appearance of mutant phenotypes. Thus, Elongator activity seems to be specifically required for leaf development at the late vegetative phase. Transcriptome analysis showed that genes involved in protein quality control were highly upregulated in the cur1 shoot apex at the later vegetative phase, suggesting the restoration of impaired proteins probably produced by partial defects in translational control due to the loss of function of Elongator. The differences in the mutant phenotype and gene expression profile between CUR1 and its Arabidopsis ortholog suggest that Elongator has evolved to play a unique role in rice development.

  11. Mitochondrial dynamics and segregation during the asymmetric division of Arabidopsis zygotes Peer-reviewed

    Yusuke Kimata, Takumi Higaki, Daisuke Kurihara, Naoe Ando, Hikari Matsumoto, Tetsuya Higashiyama, Minako Ueda

    Quantitative Plant Biology 1 2020

    Publisher: Cambridge University Press ({CUP})

    DOI: 10.1017/qpb.2020.4  

    ISSN: 2632-8828

    eISSN: 2632-8828

    More details Close

    <jats:title>Abstract</jats:title><jats:p>The zygote is the first cell of a multicellular organism. In most angiosperms, the zygote divides asymmetrically to produce an embryo-precursor apical cell and a supporting basal cell. Zygotic division should properly segregate symbiotic organelles, because they cannot be synthesized <jats:italic>de novo</jats:italic>. In this study, we revealed the real-time dynamics of the principle source of ATP biogenesis, mitochondria, in <jats:italic>Arabidopsis thaliana</jats:italic> zygotes using live-cell observations and image quantifications. In the zygote, the mitochondria formed the extended structure associated with the longitudinal array of actin filaments (F-actins) and were polarly distributed along the apical–basal axis. The mitochondria were then temporally fragmented during zygotic division, and the resulting apical cells inherited mitochondria at higher concentration compared to the basal cells. Further observation of postembryonic organs showed that these mitochondrial behaviours are characteristic of the zygote. Overall, our results showed that the zygote has spatiotemporal regulation that unequally distributes the mitochondria.</jats:p>

  12. Characterization of a half-pipe-like leaf1 mutant that exhibits a curled leaf phenotype Peer-reviewed

    Hikari Matsumoto, Yukiko Yasui, Toshihiro Kumamaru, Hiro-Yuki Hirano

    Genes & Genetic Systems 92 (6) 287-291 2017/12/01

    Publisher: Genetics Society of Japan

    DOI: 10.1266/ggs.17-00013  

    ISSN: 1341-7568 1880-5779

Show all ︎Show first 5

Misc. 15

  1. Combination of live-cell imaging and mathematical modeling of Arabidopsis zygote reveals the mechanism of polar elongation

    松本光梨, KANG Zichen, 中川朔未, 野々山朋信, 石本志高, 檜垣匠, 津川暁, 植田美那子

    日本植物生理学会年会(Web) 65th 2024

  2. Live-cell imaging of Arabidopsis zygote reveals the mechanism of polar cell elongation

    松本光梨, 中川朔未, 檜垣匠, 津川暁, 石本志高, 野々山朋信, KANG Zichen, 植田美那子, 植田美那子

    日本植物生理学会年会(Web) 64th 2023

  3. ライブイメージング技術を駆使したシロイヌナズナ受精卵の極性伸長メカニズムの解明

    松本光梨, 中川朔未, 檜垣匠, 津川暁, 石本志高, 野々山朋信, 康子辰, 植田美那子, 植田美那子

    日本植物学会大会研究発表記録(CD-ROM) 87th 2023

  4. シロイヌナズナ初期胚の内外軸の形成過程における微小管動態の解析

    花木優河, 松本光梨, 中川朔未, 檜垣匠, 津川暁, 石本志高, 野々山朋信, 康子辰, 植田美那子, 植田美那子

    日本植物学会大会研究発表記録(CD-ROM) 87th 2023

  5. シロイヌナズナ受精卵における頂端-基部軸上の細胞内構造分布の定量的解析

    弘本悠紀子, 木全祐資, 松本光梨, 中川朔未, 植田美那子, 檜垣匠

    日本植物学会大会研究発表記録(CD-ROM) 87th 2023

  6. Quantification of internal fluidity in living systems from live imaging data

    石本志高, 野々山朋信, KANG Zichen, 松本光梨, 木全祐資, 中川朔未, 津川暁, 檜垣匠, 植田美那子, 植田美那子, 新見修, 新見修

    日本分子生物学会年会プログラム・要旨集(Web) 46th 2023

  7. Live-cell imaging of the internal flow dynamics during plant embryogenesis

    植田美那子, 植田美那子, 松本光梨, KANG Zichen, 野々山朋信, 石本志高, 津川暁, 中川朔未, 花木優河, 木全祐資, 檜垣匠, 松下優貴, 松下優貴, 鎌本直也, 藤本仰一

    日本分子生物学会年会プログラム・要旨集(Web) 46th 2023

  8. ライブイメージングに基づいた数理モデル化で迫るシロイヌナズナ受精卵の細胞伸長機構

    中川朔未, 植田美那子, 植田美那子, 松本光梨, 檜垣匠, 津川暁, 石本志高, 野々山朋信, 康子辰

    日本植物学会大会研究発表記録(CD-ROM) 86th 2022

  9. ライブイメージング技術と顕微操作の統合により迫る細胞内ダイナミクス

    松本光梨, 中川朔未, 檜垣匠, 津川暁, 石本志高, 野々山朋信, 康子辰, 田中美虹, 植田美那子, 植田美那子

    日本植物学会大会研究発表記録(CD-ROM) 86th 2022

  10. ライブイメージング解析によるシロイヌナズナ受精卵の極性化過程の解明

    松本光梨, 木全祐資, 檜垣匠, 東山哲也, 東山哲也, 東山哲也, 植田美那子

    日本植物学会大会研究発表記録(CD-ROM) 85th 2021

  11. 受精卵と初期胚における周期と変調から解き明かす植物の体軸形成機構

    植田美那子, 植田美那子, 小松大鳳, 田中小百合, 檜垣匠, 松本光梨, 木全祐資, 鎌本直也, 藤本仰一, 東山哲也, 東山哲也

    日本植物学会大会研究発表記録(CD-ROM) 85th 2021

  12. 受精卵の内部動態から迫る植物の体軸形成機構

    植田美那子, 植田美那子, 木全祐資, 松本光梨, 檜垣匠, 栗原大輔, 栗原大輔, 東山哲也, 東山哲也, 東山哲也

    日本植物学会大会研究発表記録(CD-ROM) 84th 2020

  13. 植物における受精卵の極性化動態のライブイメージング

    植田美那子, 植田美那子, 植田美那子, 木全祐資, 松本光梨, 檜垣匠, 小松大鳳, 田中小百合, 栗原大輔, 栗原大輔, 東山哲也, 東山哲也, 東山哲也

    日本分子生物学会年会プログラム・要旨集(Web) 43rd 2020

  14. Functional analyses of the Elongator genes that regulate rice development

    松本光梨, 安居佑季子, 大森良弘, 田中若奈, 田中若奈, 石川哲也, 沼寿隆, 白澤健太, 白澤健太, 谷口洋二郎, 田中淳一, 鈴木保宏, 平野博之

    育種学研究 22 2020

    ISSN: 1344-7629

  15. 個体の成長にともなって葉の形態を制御するイネ遺伝子の発生遺伝学的解析

    松本光梨, 安居佑季子, 田中若奈, 大森良弘, 石川哲也, 沼寿隆, 白澤健太, 白澤健太, 谷口洋二郎, 田中淳一, 鈴木保宏, 平野博之

    育種学研究 21 55 2019/09/06

    DOI: 10.1270/jsbbr.21.W02  

    ISSN: 1344-7629

Show all ︎Show first 5

Research Projects 2

  1. 先端成長から迫る受精卵の極性化機構の解明

    松本 光梨

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 若手研究

    Category: 若手研究

    Institution: 東北大学

    2022/04/01 - 2025/03/31

  2. 植物受精卵が上下軸を作る仕組み~細胞の極性化と分裂タイミングの時空間連携~

    松本 光梨

    Offer Organization: 日本学術振興会

    System: 科学研究費助成事業 研究活動スタート支援

    Category: 研究活動スタート支援

    Institution: 東北大学

    2021/08/30 - 2023/03/31

    More details Close

    発生には、細胞分裂の方向と時期といった空間と時間の制御の連携が重要である。植物の受精卵では、細胞伸長や核の移動という極性化が非対称分裂に必須だと判明している一方で、分裂タイミングを決める時間的制御の理解は進んでいない。近年、代表者らは、シロイヌナズナ受精卵のライブイメージング系を確立させ、世界で初めて受精卵の内部動態を追跡することに成功した。例えば、受精卵内部で上下に配向したアクチン繊維に沿ってミトコンドリアが連結して上方向に移動するという極性化動態や、極性化の完了後に非対称分裂する間だけ、ミトコンドリアが球状に分離し、娘細胞への不等分配を助けるという役割を明らかにした(Kimata et al, 2020)。このことから、受精卵では、極性化の完了と非対称分裂のタイミングを適切に連動させる時空間連携の仕組みが存在し、それによって細胞内事象が制御される可能性を見出した。そこで代表者は、多数のマーカーや阻害剤を駆使したライブイメージングにより、時空間連携に関与する事象の時系列を明らかにすることにした。まず、これまでのライブイメージング手法を改良することで、細胞内動態をより高い時間分解能で捉えることに成功した。さらにカルシウムイオンや細胞内構造の蛍光標識株を用いたキモグラフ解析により、細胞伸長や核の移動、Ca波の変化といった各事象がどのような順序で起こるのかを明らかにした。現在、細胞周期の進行との関連性を明らかにするため、作出した細胞周期と細胞膜の多色株の解析を進めている。