顔写真

イシダ ヒロユキ
石田 宏幸
Hiroyuki Ishida
所属
大学院農学研究科 農芸化学専攻 生物化学講座(植物栄養学分野)
職名
教授
学位
  • 博士(農学)(東北大学)

e-Rad 研究者番号
60312625

経歴 4

  • 2022年4月 ~ 継続中
    東北大学 大学院農学研究科 教授

  • 2009年4月 ~ 2022年3月
    東北大学大学院農学研究科 准教授

  • 2007年4月 ~ 2009年3月
    東北大学大学院農学研究科 助教

  • 1999年4月 ~ 2007年3月
    東北大学大学院農学研究科 助手

学歴 2

  • 東北大学 大学院農学研究科 農芸化学専攻

    ~ 1999年3月

  • 東北大学 農学部 農芸化学科

    ~ 1994年3月

委員歴 24

  • 財団法人翠生農学振興会助成金選考委員会 委員

    2014年4月 ~ 2015年3月

  • 財団法人翠生農学振興会募金委員会 委員

    2014年4月 ~ 2015年3月

  • 財団法人翠生農学振興会助成金選考委員会 委員

    2014年4月 ~ 2015年3月

  • 財団法人翠生農学振興会募金委員会 委員

    2014年4月 ~ 2015年3月

  • 財団法人翠生農学振興会助成金選考委員会 委員

    2013年4月 ~ 2014年3月

  • 財団法人翠生農学振興会募金委員会 委員

    2013年4月 ~ 2014年3月

  • 財団法人翠生農学振興会助成金選考委員会 委員

    2013年4月 ~ 2014年3月

  • 財団法人翠生農学振興会募金委員会 委員

    2013年4月 ~ 2014年3月

  • Saclay Plant Sciences 書面審査委員

    2017年3月 ~

  • Saclay Plant Sciences 書面審査委員

    2017年3月 ~

  • United States-Israel Binational Science Foundation 書面審査委員

    2016年3月 ~

  • Saclay Plant Sciences 書面審査委員

    2016年3月 ~

  • United States-Israel Binational Science Foundation 書面審査委員

    2016年3月 ~

  • Saclay Plant Sciences 書面審査委員

    2016年3月 ~

  • 米国植物生物学会 Plant Physiology 論文審査委員

    2015年10月 ~

  • 米国植物生物学会 Plant Physiology 論文審査委員

    2015年10月 ~

  • 米国植物生物学会 Plant Physiology 論文審査委員

    2015年3月 ~

  • 日本植物生理学会 Plant Cell Physiology 論文審査委員

    2015年3月 ~

  • 米国植物生物学会 Plant Physiology 論文審査委員

    2015年3月 ~

  • 日本植物生理学会 Plant Cell Physiology 論文審査委員

    2015年3月 ~

  • 米国植物生物学会 Plant Cell 論文審査委員

    2014年11月 ~

  • 米国植物生物学会 Plant Cell 論文審査委員

    2014年11月 ~

  • 日本植物生理学会 Plant Cell Physiology 論文審査委員

    2014年6月 ~

  • 日本植物生理学会 Plant Cell Physiology 論文審査委員

    2014年6月 ~

︎全件表示 ︎最初の5件までを表示

所属学協会 5

  • 米国植物生物学会

  • 日本光合成学会

  • 日本農芸化学会

  • 日本土壌肥料学会

  • 日本植物生理学会

研究キーワード 7

  • 葉間窒素分配

  • イネ群落

  • 葉緑体/プラスチド

  • 葉の老化

  • Rubisco

  • 窒素転流

  • オートファジー

研究分野 3

  • 環境・農学 / 作物生産科学 / イネ群落の生産性

  • ライフサイエンス / 応用分子細胞生物学 / 植物のタンパク質代謝

  • ライフサイエンス / 植物栄養学、土壌学 / 窒素の体内利用・転流

受賞 1

  1. 第14回国際光合成会議ベストポスター賞

    2007年7月 International Society of Photosynthesis Research 当該会議における全669題の発表のうち特に内容が優れていた7題に授与された

論文 62

  1. Autophagy Contributes to the Quality Control of Leaf Mitochondria 査読有り

    Sakuya Nakamura, Shinya Hagihara, Kohei Otomo, Hiroyuki Ishida, Jun Hidema, Tomomi Nemoto, Masanori Izumi

    Plant and Cell Physiology 2020年12月23日

    出版者・発行元:Oxford University Press (OUP)

    DOI: 10.1093/pcp/pcaa162  

    ISSN:0032-0781

    eISSN:1471-9053

    詳細を見る 詳細を閉じる

    <title>Abstract</title> In autophagy, cytoplasmic components of eukaryotic cells are transported to lysosomes or the vacuole for degradation. Autophagy is involved in plant tolerance to the photooxidative stress caused by ultraviolet B (UVB) radiation, but its roles in plant adaptation to UVB damage have not been fully elucidated. Here, we characterized organellar behavior in UVB-damaged Arabidopsis (Arabidopsis thaliana) leaves and observed the occurrence of autophagic elimination of dysfunctional mitochondria, a process termed mitophagy. Notably, Arabidopsis plants blocked in autophagy displayed increased leaf chlorosis after a 1-h UVB exposure compared to wild-type plants. We visualized autophagosomes by labeling with a fluorescent protein-tagged autophagosome marker, AUTOPHAGY8 (ATG8), and found that a 1-h UVB treatment led to increased formation of autophagosomes and the active transport of mitochondria into the central vacuole. In atg mutant plants, the mitochondrial population increased in UVB-damaged leaves due to the cytoplasmic accumulation of fragmented, depolarized mitochondria. Furthermore, we observed that autophagy was involved in the removal of depolarized mitochondria when mitochondrial function was disrupted by mutation of the FRIENDLY gene, which is required for proper mitochondrial distribution. Therefore, autophagy of mitochondria functions in response to mitochondrion-specific dysfunction as well as UVB damage. Together, these results indicate that autophagy is centrally involved in mitochondrial quality control in Arabidopsis leaves.

  2. Chloroplast Autophagy and Ubiquitination Combine to Manage Oxidative Damage and Starvation Responses. 国際誌 査読有り

    Yuta Kikuchi, Sakuya Nakamura, Jesse D Woodson, Hiroyuki Ishida, Qihua Ling, Jun Hidema, R Paul Jarvis, Shinya Hagihara, Masanori Izumi

    Plant Physiology 183 (4) 1531-1544 2020年8月

    DOI: 10.1104/pp.20.00237  

    詳細を見る 詳細を閉じる

    Autophagy and the ubiquitin-proteasome system are the major degradation processes for intracellular components in eukaryotes. Although ubiquitination acts as a signal inducing organelle-targeting autophagy, the interaction between ubiquitination and autophagy in chloroplast turnover has not been addressed. In this study, we found that two chloroplast-associated E3 enzymes, SUPPRESSOR OF PPI1 LOCUS1 and PLANT U-BOX4 (PUB4), are not necessary for the induction of either piecemeal autophagy of chloroplast stroma or chlorophagy of whole damaged chloroplasts in Arabidopsis (Arabidopsis thaliana). Double mutations of an autophagy gene and PUB4 caused synergistic phenotypes relative to single mutations. The double mutants developed accelerated leaf chlorosis linked to the overaccumulation of reactive oxygen species during senescence and had reduced seed production. Biochemical detection of ubiquitinated proteins indicated that both autophagy and PUB4-associated ubiquitination contributed to protein degradation in the senescing leaves. Furthermore, the double mutants had enhanced susceptibility to carbon or nitrogen starvation relative to single mutants. Together, these results indicate that autophagy and chloroplast-associated E3s cooperate for protein turnover, management of reactive oxygen species accumulation, and adaptation to starvation.

  3. Transgenic rice overproducing Rubisco exhibits increased yields with improved nitrogen-use efficiency in an experimental paddy field 査読有り

    Dong-Kyung Yoon, Keiki Ishiyama, Mao Suganami, Youshi Tazoe, Mari Watanabe, Serina Imaruoka, Maki Ogura, Hiroyuki Ishida, Yuji Suzuki, Mitsuhiro Obara, Tadahiko Mae, Amane Makino

    Nature Food 1 (2) 134-139 2020年2月

    出版者・発行元:Springer Science and Business Media LLC

    DOI: 10.1038/s43016-020-0033-x  

    eISSN:2662-1355

    詳細を見る 詳細を閉じる

    The green revolution’s breeding of semi-dwarf rice cultivars in the 1960s improved crop yields, with large increases in the use of nitrogen (N) fertilizer. However, excess N application has caused serious environmental problems, including acid rain and the eutrophication of rivers and oceans. To use N to improve crop yields, while minimizing the associated environmental costs, there is a need to produce crops with higher N-use efficiency and higher yield components. Here we show that transgenic rice overproducing ribulose 1,5-bisphosphate carboxylase–oxygenase (Rubisco)—the key enzyme of photosynthesis—exhibits increased yields with improved N-use efficiency for increasing biomass production when receiving sufficient N fertilization in an experimental paddy field. This field experiment demonstrates an improvement in photosynthesis linked to yield increase due to a higher N-use efficiency in a major crop.

  4. Vacuolar protein degradation via autophagy provides substrates to amino acid catabolic pathways as an adaptive response to sugar starvation in arabidopsis thaliana 招待有り 査読有り

    Takaaki Hirota, Masanori Izumi, Masanori Izumi, Masanori Izumi, Shinya Wada, Shinya Wada, Amane Makino, Hiroyuki Ishida

    Plant and Cell Physiology 59 1363-1376 2018年7月

    DOI: 10.1093/pcp/pcy005  

    ISSN:0032-0781

    詳細を見る 詳細を閉じる

    本人がCorresponding author(*)である。<br /> IF=4.059

  5. Selective elimination of membrane-damaged chloroplasts via microautophagy 国際誌

    Sakuya Nakamura, Jun Hidema, Wataru Sakamoto, Hiroyuki Ishida, Masanori Izumi, Masanori Izumi, Masanori Izumi

    Plant Physiology 177 (3) 1007-1026 2018年6月

    DOI: 10.1104/pp.18.00444  

    ISSN:0032-0889

  6. Impacts of autophagy on nitrogen use efficiency in plants 招待有り 査読有り

    Hiroyuki Ishida, Amane Makino

    Soil Science and Plant Nutrition 64 (1) 100-105 2018年1月2日

    出版者・発行元:Taylor and Francis Ltd.

    DOI: 10.1080/00380768.2017.1412239  

    ISSN:1747-0765 0038-0768

    詳細を見る 詳細を閉じる

    Crop productivity greatly depends on nitrogen (N) fertilization. Large inputs of N fertilizer impact on both the farmer and the environment. Accordingly, improving N use efficiency (NUE) for crop productivity is important for sustainable agriculture. Much plant nitrogen is allocated into the chloroplasts in leaves to constitute proteins involved in photosynthesis, and remobilization of N from senescent leaves greatly affects crop productivity. Autophagy, a highly conserved system used to degrade intracellular components in eukaryotes, is responsible for degrading chloroplasts and their proteins during leaf senescence. In this paper, we review recent studies establishing that autophagy is a key for maintaining high NUE during vegetative growth and for efficiently remobilizing N to grains.

  7. Entire Photodamaged Chloroplasts Are Transported to the Central Vacuole by Autophagy 査読有り

    Masanori Izumi, Hiroyuki Ishida, Sakuya Nakamura, Jun Hidema

    PLANT CELL 29 (2) 377-394 2017年2月

    出版者・発行元:AMER SOC PLANT BIOLOGISTS

    DOI: 10.1105/tpc.16.00637  

    ISSN:1040-4651

    eISSN:1532-298X

    詳細を見る 詳細を閉じる

    Turnover of dysfunctional organelles is vital to maintain homeostasis in eukaryotic cells. As photosynthetic organelles, plant chloroplasts can suffer sunlight-induced damage. However, the process for turnover of entire damaged chloroplasts remains unclear. Here, we demonstrate that autophagy is responsible for the elimination of sunlight-damaged, collapsed chloroplasts in Arabidopsis thaliana. We found that vacuolar transport of entire chloroplasts, termed chlorophagy, was induced by UV-B damage to the chloroplast apparatus. This transport did not occur in autophagy-defective atg mutants, which exhibited UV-B-sensitive phenotypes and accumulated collapsed chloroplasts. Use of a fluorescent protein marker of the autophagosomal membrane allowed us to image autophagosome-mediated transport of entire chloroplasts to the central vacuole. In contrast to sugar starvation, which preferentially induced distinct type of chloroplast-targeted autophagy that transports a part of stroma via the Rubisco-containing body (RCB) pathway, photooxidative damage induced chlorophagy without prior activation of RCB production. We further showed that chlorophagy is induced by chloroplast damage caused by either artificial visible light or natural sunlight. Thus, this report establishes that an autophagic process eliminates entire chloroplasts in response to light-induced damage.

  8. Autophagy is induced under Zn limitation and contributes to Zn-limited stress tolerance in Arabidopsis (Arabidopsis thaliana) 査読有り

    Masatake Eguchi, Kazuhiko Kimura, Amane Makino, Hiroyuki Ishida

    SOIL SCIENCE AND PLANT NUTRITION 63 (4) 342-350 2017年

    出版者・発行元:TAYLOR & FRANCIS LTD

    DOI: 10.1080/00380768.2017.1360750  

    ISSN:0038-0768

    eISSN:1747-0765

    詳細を見る 詳細を閉じる

    Autophagy is a degradation system for cellular components conserved in eukaryotes. In Arabidopsis, it is known that autophagy is crucial for growth under dark-induced carbon starvation and N deficiency. However, little is known about the relationship between autophagy and other nutrients. Here, we focused on the relationship between autophagy and Zn nutrition. We found that autophagy-deficient (atg) mutants showed an early senescence phenotype under Zn limitation and limited growth recovery from Zn limitation. Furthermore, we confirmed the induction of autophagy under Zn limitation by expression analysis of autophagy-related genes (ATGs) and imaging analysis of autophagic bodies with green fluorescent protein-ATG8a (GFP-ATG8a). In atg mutants, although the Zn concentrations were similar to those of the wild-type plants, the transcript levels of Zn deficiency-inducible genes fluctuated more, and O-2(-) and H2O2 levels increased more than in wild-type plants. These results suggest that autophagy is involved in intracellular Zn usage and suppresses the accumulation of reactive oxygen species (ROS) generated by Zn limitation.

  9. Autophagy Supports Biomass Production and Nitrogen Use Efficiency at the Vegetative Stage in Rice 査読有り

    Shinya Wada, Yasukazu Hayashida, Masanori Izumi, Takamitsu Kurusu, Shigeru Hanamata, Keiichi Kanno, Soichi Kojima, Tomoyuki Yamaya, Kazuyuki Kuchitsu, Amane Makino, Hiroyuki Ishida

    PLANT PHYSIOLOGY 168 (1) 60-U721 2015年5月

    出版者・発行元:AMER SOC PLANT BIOLOGISTS

    DOI: 10.1104/pp.15.00242  

    ISSN:0032-0889

    eISSN:1532-2548

    詳細を見る 詳細を閉じる

    Much of the nitrogen in leaves is distributed to chloroplasts, mainly in photosynthetic proteins. During leaf senescence, chloroplastic proteins, including Rubisco, are rapidly degraded, and the released nitrogen is remobilized and reused in newly developing tissues. Autophagy facilitates the degradation of intracellular components for nutrient recycling in all eukaryotes, and recent studies have revealed critical roles for autophagy in Rubisco degradation and nitrogen remobilization into seeds in Arabidopsis (Arabidopsis thaliana). Here, we examined the function of autophagy in vegetative growth and nitrogen usage in a cereal plant, rice (Oryza sativa). An autophagy-disrupted rice mutant, Osatg7-1, showed reduced biomass production and nitrogen use efficiency compared with the wild type. While Osatg7-1 showed early visible leaf senescence, the nitrogen concentration remained high in the senescent leaves. N-15 pulse chase analysis revealed suppression of nitrogen remobilization during leaf senescence in Osatg7-1. Accordingly, the reduction of nitrogen available for newly developing tissues in Osatg7-1 likely led its reduced leaf area and tillers. The limited leaf growth in Osatg7-1 decreased the photosynthetic capacity of the plant. Much of the nitrogen remaining in senescent leaves of Osatg7-1 was in soluble proteins, and the Rubisco concentration in senescing leaves of Osatg7-1 was about 2.5 times higher than in the wild type. Transmission electron micrographs showed a cytosolic fraction rich with organelles in senescent leaves of Osatg7-1. Our results suggest that autophagy contributes to efficient nitrogen remobilization at the whole-plant level by facilitating protein degradation for nitrogen recycling in senescent leaves.

  10. Establishment of Monitoring Methods for Autophagy in Rice Reveals Autophagic Recycling of Chloroplasts and Root Plastids during Energy Limitation

    Masanori Izumi, Jun Hidema, Shinya Wada, Eri Kondo, Takamitsu Kurusu, Kazuyuki Kuchitsu, Amane Makino, Hiroyuki Ishida

    PLANT PHYSIOLOGY 167 (4) 1307-U316 2015年4月

    出版者・発行元:AMER SOC PLANT BIOLOGISTS

    DOI: 10.1104/pp.114.254078  

    ISSN:0032-0889

    eISSN:1532-2548

    詳細を見る 詳細を閉じる

    Autophagy is an intracellular process leading to vacuolar or lysosomal degradation of cytoplasmic components in eukaryotes. Establishment of proper methods to monitor autophagy was a key step in uncovering its role in organisms, such as yeast (Saccharomyces cerevisiae), mammals, and Arabidopsis (Arabidopsis thaliana), in which chloroplastic proteins were found to be recycled by autophagy. Chloroplast recycling has been predicted to function in nutrient remobilization for growing organs or grain filling in cereal crops. Here, to develop our understanding of autophagy in cereals, we established monitoring methods for chloroplast autophagy in rice (Oryza sativa). We generated transgenic rice-expressing fluorescent protein (FP) OsAuTophaGy8 (OsATG8) fusions as autophagy markers. FP-ATG8 signals were delivered into the vacuolar lumen in living cells of roots and leaves mainly as vesicles corresponding to autophagic bodies. This phenomenon was not observed upon the addition of wortmannin, an inhibitor of autophagy, or in an ATG7 knockout mutant. Markers for the chloroplast stroma, stromal FP, and FP-labeled Rubisco were delivered by a type of autophagic body called the Rubisco-containing body (RCB) in the same manner. RCB production in excised leaves was suppressed by supply of external sucrose or light. The release of free FP caused by autophagy-dependent breakdown of FP-labeled Rubisco was induced during accelerated senescence in individually darkened leaves. In roots, nongreen plastids underwent both RCB-mediated and entire organelle types of autophagy. Therefore, our newly developed methods to monitor autophagy directly showed autophagic degradation of leaf chloroplasts and root plastids in rice plants and its induction during energy limitation.

  11. OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development

    Takamitsu Kurusu, Tomoko Koyano, Shigeru Hanamata, Takahiko Kubo, Yuhei Noguchi, Chikako Yagi, Noriko Nagata, Takashi Yamamoto, Takayuki Ohnishi, Yozo Okazaki, Nobutaka Kitahata, Daichi Ando, Masaya Ishikawa, Shinya Wada, Akio Miyao, Hirohiko Hirochika, Hiroaki Shimada, Amane Makino, Kazuki Saito, Hiroyuki Ishida, Tetsu Kinoshita, Nori Kurata, Kazuyuki Kuchitsu

    AUTOPHAGY 10 (5) 878-888 2014年5月

    出版者・発行元:TAYLOR & FRANCIS INC

    DOI: 10.4161/auto.28279  

    ISSN:1554-8627

    eISSN:1554-8635

    詳細を見る 詳細を閉じる

    In flowering plants, the tapetum, the innermost layer of the anther, provides both nutrient and lipid components to developing microspores, pollen grains, and the pollen coat. Though the programmed cell death of the tapetum is one of the most critical and sensitive steps for fertility and is affected by various environmental stresses, its regulatory mechanisms remain mostly unknown. Here we show that autophagy is required for the metabolic regulation and nutrient supply in anthers and that autophagic degradation within tapetum cells is essential for postmeiotic anther development in rice. Autophagosome-like structures and several vacuole-enclosed lipid bodies were observed in postmeiotic tapetum cells specifically at the uninucleate stage during pollen development, which were completely abolished in a retrotransposon-insertional OsATG7 (autophagy-related 7)-knockout mutant defective in autophagy, suggesting that autophagy is induced in tapetum cells. Surprisingly, the mutant showed complete sporophytic male sterility, failed to accumulate lipidic and starch components in pollen grains at the flowering stage, showed reduced pollen germination activity, and had limited anther dehiscence. Lipidomic analyses suggested impairment of editing of phosphatidylcholines and lipid desaturation in the mutant during pollen maturation. These results indicate a critical involvement of autophagy in a reproductive developmental process of rice, and shed light on the novel autophagy-mediated regulation of lipid metabolism in eukaryotic cells.

  12. Roles of autophagy in chloroplast recycling 招待有り 査読有り

    Hiroyuki Ishida, Masanori Izumi, Shinya Wada, Amane Makino

    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1837 (4) 512-521 2014年4月

    出版者・発行元:ELSEVIER SCIENCE BV

    DOI: 10.1016/j.bbabio.2013.11.009  

    ISSN:0005-2728

    eISSN:0006-3002

    詳細を見る 詳細を閉じる

    Chloroplasts are the primary energy suppliers for plants, and much of the total leaf nitrogen is distributed to these organelles. During growth and reproduction, chloroplasts in turn represent a major source of nitrogen to be recovered from senescing leaves and used in newly-forming and storage organs. Chloroplast proteins also can be an alternative substrate for respiration under suboptimal conditions. Autophagy is a process of bulk degradation and nutrient sequestration that is conserved in all eukaryotes. Autophagy can selectively target chloroplasts as whole organelles and or as Rubisco-containing bodies that are enclosed by the envelope and specifically contain the stromal portion of the chloroplast. Although information is still limited, recent work indicates that chloroplast recycling via autophagy plays important roles not only in developmental processes but also in organelle quality control and adaptation to changing environments. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components. (C) 2013 Elsevier B.V. All rights reserved.

  13. Evidence for contribution of autophagy to Rubisco degradation during leaf senescence in Arabidopsis thaliana

    Yuki Ono, Shinya Wada, Masanori Izumi, Amane Makino, Hiroyuki Ishida

    PLANT CELL AND ENVIRONMENT 36 (6) 1147-1159 2013年6月

    出版者・発行元:WILEY-BLACKWELL

    DOI: 10.1111/pce.12049  

    ISSN:0140-7791

    詳細を見る 詳細を閉じる

    During leaf senescence, Rubisco is gradually degraded and its components are recycled within the plant. Although Rubisco can be mobilized to the vacuole by autophagy via specific autophagic bodies, the importance of this process in Rubisco degradation has not been shown directly. Here, we monitored Rubisco autophagy during leaf senescence by fusing synthetic green fluorescent protein (sGFP) or monomeric red fluorescent protein (mRFP) with Rubisco in Arabidopsis (Arabidopsis thaliana). When attached leaves were individually exposed to darkness to promote their senescence, the fluorescence of Rubisco-sGFP was observed in the vacuolar lumen as well as chloroplasts. In addition, release of free-sGFP due to the processing of Rubisco-sGFP was observed in the vacuole of individually darkened leaves. This vacuolar transfer and processing of Rubisco-sGFP was not observed in autophagy-deficient atg5 mutants. Unlike sGFP, mRFP was resistant to proteolysis in the leaf vacuole of light-grown plants. The vacuolar transfer and processing of Rubisco-mRFP was observed at an early stage of natural leaf senescence and was also obvious in leaves naturally covered by other leaves. These results indicate that autophagy contributes substantially to Rubisco degradation during natural leaf senescence as well as dark-promoted senescence.

  14. Autophagy Contributes to Nighttime Energy Availability for Growth in Arabidopsis 査読有り

    Masanori Izumi, Jun Hidema, Amane Makino, Hiroyuki Ishida

    PLANT PHYSIOLOGY 161 (4) 1682-1693 2013年4月

    出版者・発行元:AMER SOC PLANT BIOLOGISTS

    DOI: 10.1104/pp.113.215632  

    ISSN:0032-0889

    詳細を見る 詳細を閉じる

    Autophagy is an intracellular process leading to the vacuolar degradation of cytoplasmic components. Autophagic degradation of chloroplasts is particularly activated in leaves under conditions of low sugar availability. Here, we investigated the importance of autophagy in the energy availability and growth of Arabidopsis (Arabidopsis thaliana). autophagy-deficient (atg) mutants showed reduced growth under short-day conditions. This growth inhibition was largely relieved under continuous light or under short-day conditions combined with feeding of exogenous sucrose, suggesting that autophagy is involved in energy production at night for growth. Arabidopsis accumulates starch during the day and degrades it for respiration at night. Nighttime energy availability is perturbed in starchless mutants, in which a lack of starch accumulation causes a transient sugar deficit at night. We generated starchless and atg double mutants and grew them under different photoperiods. The double mutants showed more severe phenotypes than did atg or starchless single mutants: reduced growth and early cell death in leaves were observed when plants were grown under 10-h photoperiods. Transcript analysis of dark-inducible genes revealed that the sugar starvation symptoms observed in starchless mutants became more severe in starchless atg double mutants. The contents of free amino acids (AAs) increased, and transcript levels of several genes involved in AA catabolism were elevated in starchless mutant leaves. The increases in branched-chain AA and aromatic AA contents were partially compromised in starchless atg double mutants. We conclude that autophagy can contribute to energy availability at night by providing a supply of alternative energy sources such as AAs.

  15. A possible involvement of autophagy in amyloplast degradation in columella cells during hydrotropic response of Arabidopsis roots 査読有り

    Mayumi Nakayama, Yasuko Kaneko, Yutaka Miyazawa, Nobuharu Fujii, Nahoko Higashitani, Shinya Wada, Hiroyuki Ishida, Kohki Yoshimoto, Ken Shirasu, Kenji Yamada, Mikio Nishimura, Hideyuki Takahashi

    PLANTA 236 (4) 999-1012 2012年10月

    出版者・発行元:SPRINGER

    DOI: 10.1007/s00425-012-1655-5  

    ISSN:0032-0935

    詳細を見る 詳細を閉じる

    Seedling roots display not only gravitropism but also hydrotropism, and the two tropisms interfere with one another. In Arabidopsis (Arabidopsis thaliana) roots, amyloplasts in columella cells are rapidly degraded during the hydrotropic response. Degradation of amyloplasts involved in gravisensing enhances the hydrotropic response by reducing the gravitropic response. However, the mechanism by which amyloplasts are degraded in hydrotropically responding roots remains unknown. In this study, the mechanistic aspects of the degradation of amyloplasts in columella cells during hydrotropic response were investigated by analyzing organellar morphology, cell polarity and changes in gene expression. The results showed that hydrotropic stimulation or systemic water stress caused dramatic changes in organellar form and positioning in columella cells. Specifically, the columella cells of hydrotropically responding or water-stressed roots lost polarity in the distribution of the endoplasmic reticulum (ER), and showed accelerated vacuolization and nuclear movement. Analysis of ER-localized GFP showed that ER redistributed around the developed vacuoles. Cells often showed decomposing amyloplasts in autophagosome-like structures. Both hydrotropic stimulation and water stress upregulated the expression of AtATG18a, which is required for autophagosome formation. Furthermore, analysis with GFP-AtATG8a revealed that both hydrotropic stimulation and water stress induced the formation of autophagosomes in the columella cells. In addition, expression of plastid marker, pt-GFP, in the columella cells dramatically decreased in response to both hydrotropic stimulation and water stress, but its decrease was much less in the autophagy mutant atg5. These results suggest that hydrotropic stimulation confers water stress in the roots, which triggers an autophagic response responsible for the degradation of amyloplasts in columella cells of Arabidopsis roots.

  16. RBCS1A and RBCS3B, two major members within the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity 査読有り

    Masanori Izumi, Honami Tsunoda, Yuji Suzuki, Amane Makino, Hiroyuki Ishida

    JOURNAL OF EXPERIMENTAL BOTANY 63 (5) 2159-2170 2012年3月

    出版者・発行元:OXFORD UNIV PRESS

    DOI: 10.1093/jxb/err434  

    ISSN:0022-0957

    詳細を見る 詳細を閉じる

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit (RBCS) is encoded by a nuclear RBCS multigene family in many plant species. The contribution of the RBCS multigenes to accumulation of Rubisco holoenzyme and photosynthetic characteristics remains unclear. T-DNA insertion mutants of RBCS1A (rbcs1a-1) and RBCS3B (rbcs3b-1) were isolated among the four Arabidopsis RBCS genes, and a double mutant (rbcs1a3b-1) was generated. RBCS1A mRNA was not detected in rbcs1a-1 and rbcs1a3b-1, while the RBCS3B mRNA level was suppressed to similar to 20% of the wild-type level in rbcs3b-1 and rbcs1a3b-1 leaves. As a result, total RBCS mRNA levels declined to 52, 79, and 23% of the wild-type level in rbcs1a-1, rbcs3b-1, and rbcs1a3b-1, respectively. Rubisco contents showed declines similar to total RBCS mRNA levels, and the ratio of Rubisco-nitrogen to total nitrogen was 62, 78, and 40% of the wild-type level in rbcs1a-1, rbcs3b-1, and rbcs1a3b-1, respectively. The effects of RBCS1A and RBCS3B mutations in rbcs1a3b-1 were clearly additive. The rates of CO2 assimilation at ambient CO2 of 40 Pa were reduced with decreased Rubisco contents in the respective mutant leaves. Although the RBCS composition in the Rubisco holoenzyme changed, the CO2 assimilation rates per unit of Rubisco content were the same irrespective of the genotype. These results clearly indicate that RBCS1A and RBCS3B contribute to accumulation of Rubisco in Arabidopsis leaves and that these genes work additively to yield sufficient Rubisco for photosynthetic capacity. It is also suggested that the RBCS composition in the Rubisco holoenzyme does not affect photosynthesis under the present ambient [CO2] conditions.

  17. The Autophagic Degradation of Chloroplasts via Rubisco-Containing Bodies Is Specifically Linked to Leaf Carbon Status But Not Nitrogen Status in Arabidopsis 査読有り

    Masanori Izumi, Shinya Wada, Amane Makino, Hiroyuki Ishida

    PLANT PHYSIOLOGY 154 (3) 1196-1209 2010年11月

    出版者・発行元:AMER SOC PLANT BIOLOGISTS

    DOI: 10.1104/pp.110.158519  

    ISSN:0032-0889

    詳細を見る 詳細を閉じる

    Autophagy is an intracellular process facilitating the vacuolar degradation of cytoplasmic components and is important for nutrient recycling during starvation. We previously demonstrated that chloroplasts can be partially mobilized to the vacuole by autophagy via spherical bodies named Rubisco-containing bodies (RCBs). Although chloroplasts contain approximately 80% of total leaf nitrogen and represent a major carbon and nitrogen source for new growth, the relationship between leaf nutrient status and RCB production remains unclear. We examined the effects of nutrient factors on the appearance of RCBs in leaves of transgenic Arabidopsis (Arabidopsis thaliana) expressing stroma-targeted fluorescent proteins. In excised leaves, the appearance of RCBs was suppressed by the presence of metabolic sugars, which were added externally or were produced during photosynthesis in the light. The light-mediated suppression was relieved by the inhibition of photosynthesis. During a diurnal cycle, RCB production was suppressed in leaves excised at the end of the day with high starch content. Starchless mutants phosphoglucomutase and ADP-Glc pyrophosphorylase1 produced a large number of RCBs, while starch-excess mutants starch-excess1 and maltose-excess1 produced fewer RCBs. In nitrogen-limited plants, as leaf carbohydrates were accumulated, RCB production was suppressed. We propose that there exists a close relationship between the degradation of chloroplast proteins via RCBs and leaf carbon but not nitrogen status in autophagy. We also found that the appearance of non-RCB-type autophagic bodies was not suppressed in the light and somewhat responded to nitrogen in excised leaves, unlike RCBs. These results imply that the degradation of chloroplast proteins via RCBs is specifically controlled in autophagy.

  18. Autophagy Plays a Role in Chloroplast Degradation during Senescence in Individually Darkened Leaves 査読有り

    Shinya Wada, Hiroyuki Ishida, Masanori Izumi, Kohki Yoshimoto, Yoshinori Ohsumi, Tadahiko Mae, Amane Makino

    PLANT PHYSIOLOGY 149 (2) 885-893 2009年2月

    出版者・発行元:AMER SOC PLANT BIOLOGISTS

    DOI: 10.1104/pp.108.130013  

    ISSN:0032-0889

    eISSN:1532-2548

    詳細を見る 詳細を閉じる

    Chloroplasts contain approximately 80% of total leaf nitrogen and represent a major source of recycled nitrogen during leaf senescence. While bulk degradation of the cytosol and organelles in plants is mediated by autophagy, its role in chloroplast catabolism is largely unknown. We investigated the effects of autophagy disruption on the number and size of chloroplasts during senescence. When leaves were individually darkened, senescence was promoted similarly in both wild-type Arabidopsis (Arabidopsis thaliana) and in an autophagy-defective mutant, atg4a4b-1. The number and size of chloroplasts decreased in darkened leaves of wild type, while the number remained constant and the size decrease was suppressed in atg4a4b-1. When leaves of transgenic plants expressing stroma-targeted DsRed were individually darkened, a large accumulation of fluorescence in the vacuolar lumen was observed. Chloroplasts exhibiting chlorophyll fluorescence, as well as Rubisco-containing bodies, were also observed in the vacuole. No accumulation of stroma-targeted DsRed, chloroplasts, or Rubisco-containing bodies was observed in the vacuoles of the autophagy-defective mutant. We have succeeded in demonstrating chloroplast autophagy in living cells and provide direct evidence of chloroplast transportation into the vacuole.

  19. Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process 査読有り

    Hiroyuki Ishida, Kohki Yoshimoto, Masanori Izumi, Daniel Reisen, Yuichi Yano, Amane Makino, Yoshinori Ohsumi, Maureen R. Hanson, Tadahiko Mae

    PLANT PHYSIOLOGY 148 (1) 142-155 2008年9月

    出版者・発行元:AMER SOC PLANT BIOLOGISTS

    DOI: 10.1104/pp.108.122770  

    ISSN:0032-0889

    詳細を見る 詳細を閉じる

    During senescence and at times of stress, plants can mobilize needed nitrogen from chloroplasts in leaves to other organs. Much of the total leaf nitrogen is allocated to the most abundant plant protein, Rubisco. While bulk degradation of the cytosol and organelles in plants occurs by autophagy, the role of autophagy in the degradation of chloroplast proteins is still unclear. We have visualized the fate of Rubisco, stroma-targeted green fluorescent protein (GFP) and DsRed, and GFP-labeled Rubisco in order to investigate the involvement of autophagy in the mobilization of stromal proteins to the vacuole. Using immunoelectron microscopy, we previously demonstrated that Rubisco is released from the chloroplast into Rubisco-containing bodies (RCBs) in naturally senescent leaves. When leaves of transgenic Arabidopsis (Arabidopsis thaliana) plants expressing stroma-targeted fluorescent proteins were incubated with concanamycin A to inhibit vacuolar H+-ATPase activity, spherical bodies exhibiting GFP or DsRed fluorescence without chlorophyll fluorescence were observed in the vacuolar lumen. Double-labeled immunoelectron microscopy with anti-Rubisco and anti-GFP antibodies confirmed that the fluorescent bodies correspond to RCBs. RCBs could also be visualized using GFP-labeled Rubisco directly. RCBs were not observed in leaves of a T-DNA insertion mutant in ATG5, one of the essential genes for autophagy. Stroma-targeted DsRed and GFP-ATG8 fusion proteins were observed together in autophagic bodies in the vacuole. We conclude that Rubisco and stroma-targeted fluorescent proteins can be mobilized to the vacuole through an ATG gene-dependent autophagic process without prior chloroplast destruction.

  20. Autophagosome development and chloroplast segmentation occur synchronously for piecemeal degradation of chloroplasts

    Masanori Izumi, Sakuya Nakamura, Kohei Otomo, Hiroyuki Ishida, Jun Hidema, Tomomi Nemoto, Shinya Hagihara

    2023年10月14日

    出版者・発行元:Cold Spring Harbor Laboratory

    DOI: 10.1101/2023.10.11.561947  

    詳細を見る 詳細を閉じる

    Plants distribute many nutrients to chloroplasts during leaf development and maturation. When leaves senesce or experience sugar starvation, the autophagy machinery degrades chloroplast proteins to facilitate efficient nutrient reuse. Here, we report on the intracellular dynamics of an autophagy pathway responsible for piecemeal degradation of chloroplast components. Through live-cell monitoring of chloroplast morphology, we observed the formation of chloroplast budding structures in sugar-starved leaves. The buds were then released and incorporated into the vacuolar lumen as an autophagic cargo termed a Rubisco-containing body. These budding structures did not accumulate in mutants of core autophagy machinery, suggesting that autophagosome creation is required for forming chloroplast protrusions. Simultaneous tracking of chloroplast morphology and autophagosome development revealed that the isolation membranes of autophagosomes tightly interact with part of the chloroplast surface before forming chloroplast buds. Chloroplasts then protrude at the site associated with the isolation membranes, which divide synchronously with autophagosome maturation. This autophagy-related division does not require DYNAMIN-RELATED PROTEIN 5B (DRP5B), which constitutes the division ring for chloroplast proliferation in growing leaves. An unidentified division machinery may thus fragment chloroplasts for degradation in coordination with the development of the chloroplast-associated isolation membrane.

  21. The <i>gs3</i> allele from a large‐grain rice cultivar, Akita 63, increases yield and improves nitrogen‐use efficiency

    Dong‐Kyung Yoon, Mao Suganami, Keiki Ishiyama, Takaaki Kagawa, Marin Tanaka, Rina Nagao, Daisuke Takagi, Hiroyuki Ishida, Yuji Suzuki, Tadahiko Mae, Amane Makino, Mitsuhiro Obara

    Plant Direct 6 (7) 2022年7月

    出版者・発行元:Wiley

    DOI: 10.1002/pld3.417  

    ISSN:2475-4455

    eISSN:2475-4455

  22. Photosynthetic Enhancement, Lifespan Extension, and Leaf Area Enlargement in Flag Leaves Increased the Yield of Transgenic Rice Plants Overproducing Rubisco Under Sufficient N Fertilization. 国際誌

    Marin Tanaka, Mamoru Keira, Dong-Kyung Yoon, Tadahiko Mae, Hiroyuki Ishida, Amane Makino, Keiki Ishiyama

    Rice (New York, N.Y.) 15 (1) 10-10 2022年2月9日

    DOI: 10.1186/s12284-022-00557-5  

    詳細を見る 詳細を閉じる

    BACKGROUND: Improvement in photosynthesis is one of the most promising approaches to increase grain yields. Transgenic rice plants overproducing Rubisco by 30% (RBCS-sense rice plants) showed up to 28% increase in grain yields under sufficient nitrogen (N) fertilization using an isolated experimental paddy field (Yoon et al. in Nat Food 1:134-139, 2020). The plant N contents above-ground sections and Rubisco contents of the flag leaves were higher in the RBCS-sense plants than in the wild-type rice plants during the ripening period, which may be reasons for the increased yields. However, some imprecise points were left in the previous research, such as contributions of photosynthesis of leaves below the flag leaves to the yield, and maintenance duration of high photosynthesis of RBCS-sense rice plants during ripening periods. RESULT: In this research, the photosynthetic capacity and canopy architecture were analyzed to explore factors for the increased yields of RBCS-sense rice plants. It was found that N had already been preferentially distributed into the flag leaves at the early ripening stage, contributing to maintaining higher Rubisco content levels in the enlarged flag leaves and extending the lifespan of the flag leaves of RBCS-sense rice plants throughout ripening periods under sufficient N fertilization. The higher amounts of Rubisco also improved the photosynthetic activity in the flag leaves throughout the ripening period. Although the enlarged flag leaves of the RBCS-sense rice plants occupied large spatial areas of the uppermost layer in the canopy, no significant prevention of light penetration to leaves below the flag leaves was observed. Additionally, since the CO2 assimilation rates of lower leaves between wild-type and RBCS-sense rice plants were the same at the early ripening stage, the lower leaves did not contribute to an increase in yields of the RBCS-sense rice plants. CONCLUSION: We concluded that improvements in the photosynthetic capacity by higher leaf N and Rubisco contents, enlarged leaf area and extended lifespan of flag leaves led to an increase in grain yields of RBCS-sense rice plants grown under sufficient N fertilization.

  23. Flavodiiron protein rescues defects in electron transport around PSI due to overproduction of Rubisco activase in rice. 国際誌

    Mao Suganami, So Konno, Ryo Maruhashi, Daisuke Takagi, Youshi Tazoe, Shinya Wada, Hiroshi Yamamoto, Toshiharu Shikanai, Hiroyuki Ishida, Yuji Suzuki, Amane Makino

    Journal of experimental botany 73 (8) 2589-2600 2022年2月2日

    DOI: 10.1093/jxb/erac035  

    詳細を見る 詳細を閉じる

    The fragility of photosystem I (PSI) was observed in transgenic rice plants overproducing Rubisco activase (RCA) (RCA-ox). This study examined the effects of RCA overproduction on PSI photoinhibition sensitivity in three lines of RCA-ox plants. The quantum yield of PSI [Y(I)] decreased, and the quantum yield of acceptor-side limitation of PSI [Y(NA)] conversely increased in all lines of RCA-ox plants, especially under low light conditions. In RCA-ox plants with the highest RCA content (RCA-ox 1), the quantum yield of PSII [Y(II)] and CO2 assimilation also decreased under low light. When leaves were exposed to high light (2,000 μmol photon m -2 s -1) for 60 min, the maximal activity of PSI (Pm) drastically decreased in RCA-ox 1. These results suggested that RCA overproduction disturbs PSI electron transport control, increasing PSI photoinhibition susceptibility. When flavodiiron protein (FLV), which functions as a large electron sink downstream of PSI, was introduced into RCA-ox 1 (RCA-FLV), PSI, PSII parameters, and CO2 assimilation in RCA-FLV plants were recovered to wild-type plant levels. Thus, FLV introduction restored PSI robustness in RCA-ox plants.

  24. GFS9 affects piecemeal autophagy of plastids in young seedlings of Arabidopsis thaliana.

    Hiroyuki Ishida, Yu Okashita, Hiromi Ishida, Makoto Hayashi, Masanori Izumi, Amane Makino, Nazmul H Bhuiyan, Klaas J Van Wijk

    Plant and Cell Physiology 2021年6月4日

    DOI: 10.1093/pcp/pcab084  

    詳細を見る 詳細を閉じる

    Chloroplasts, and plastids in general, contain abundant protein pools that can be major sources of carbon and nitrogen for recycling. We have previously shown that chloroplasts are partially and sequentially degraded by piecemeal autophagy via the Rubisco-containing body (RCB). This degradation occurs during plant development and in response to the environment; however, little is known about the fundamental underlying mechanisms. To discover the mechanisms of piecemeal autophagy of chloroplasts/plastids, we conducted a forward-genetics screen following ethyl-methanesulfonate (EMS) mutagenesis of an Arabidopsis (Arabidopsis thaliana) transgenic line expressing chloroplast-targeted GFP. This screen allowed us to isolate a mutant, gfs9-5, which hyperaccumulated cytoplasmic bodies labeled with chloroplast-targeted GFP of up to 1.0 μm in diameter in the young seedlings. We termed these structures plastid bodies (PBs). The mutant was defective in a membrane-trafficking factor, GREEN FLUORESCENT SEED 9 (GFS9), and PB accumulation in gfs9-5 was promoted by darkness and nutrient deficiency. Transmission electron microscopy indicated that gfs9-5 hyperaccumulated structures corresponding to autophagosomes and PBs. gfs9-5 hyperaccumulated membrane-bound endogenous ATG8 proteins, transgenic YFP-ATG8e proteins, and autophagosome-like structures labeled with YFP-ATG8e. The YFP-ATG8e signal was associated with the surface of plastids and their protrusions in gfs9-5. Double mutants of gfs9 and autophagy-defective 5 (atg5) did not accumulate PBs. In gfs9-5, the YFP-ATG8e proteins and PBs could be delivered to the vacuole and autophagic flux was increased. We discuss a possible connection between GFS9 and autophagy and propose a potential use of gfs9-5 as a new tool to study piecemeal plastid autophagy.

  25. An additional role for chloroplast proteins-an amino acid reservoir for energy production during sugar starvation 査読有り

    Masanori Izumi, Hiroyuki Ishida

    Plant Signaling and Behavior 14 1552057 2019年1月

    DOI: 10.1080/15592324.2018.1552057  

    ISSN:1559-2324

    詳細を見る 詳細を閉じる

    本人がCorresponding author(*)である。<br /> IF=1.395

  26. 4-1-10 シロイヌナズナの光障害時においてオートファジーは異常葉緑体の除去に関わる(4-1 植物の多量栄養素,2016年度佐賀大会)

    泉 正範, 中村 咲耶, 石田 宏幸, 日出間 純

    日本土壌肥料学会講演要旨集 62 46-46 2016年

    出版者・発行元:一般社団法人 日本土壌肥料学会

    DOI: 10.20710/dohikouen.62.0_46_1  

  27. 4-1-15 異なる光環境におけるイネの栄養成長とオートファジー(4-1 植物の多量栄養素,2016年度佐賀大会)

    和田 慎也, 山内 雄太, 石田 宏幸, 牧野 周

    日本土壌肥料学会講演要旨集 62 47-47 2016年

    出版者・発行元:一般社団法人 日本土壌肥料学会

    DOI: 10.20710/dohikouen.62.0_47_3  

  28. From Arabidopsis to cereal crops: Conservation of chloroplast protein degradation by autophagy indicates its fundamental role in plant productivity 査読有り

    Masanori Izumi, Jun Hidema, Hiroyuki Ishida

    PLANT SIGNALING & BEHAVIOR 10 (11) e1101199 2015年11月

    出版者・発行元:TAYLOR & FRANCIS INC

    DOI: 10.1080/15592324.2015.1101199  

    ISSN:1559-2316

    eISSN:1559-2324

    詳細を見る 詳細を閉じる

    Autophagy is an evolutionarily conserved process leading to the degradation of intracellular components in eukaryotes, which is important for nutrient recycling especially in response to starvation conditions. Nutrient recycling is an essential process that underpins productivity in crop plants, such that remobilized nitrogen derived from older organs supports the formation of new organs or grain-filling within a plant. We extended our understanding of autophagy in a model plant, Arabidopsis thaliana, to an important cereal, rice (Oryza sativa). Through analysis of transgenic rice plants stably expressing fluorescent marker proteins for autophagy or chloroplast stroma, we revealed that chloroplast proteins are partially degraded in the vacuole via Rubisco-containing bodies (RCBs), a type of autophagosomes containing stroma. We further reported evidence that the RCB pathway functions during natural leaf senescence to facilitate subsequent nitrogen remobilization into newly expanding leaves. Thus, our recent studies establish the importance of autophagy in biomass production of cereals.

  29. Deficiency of autophagy leads to significant changes of metabolic profiles in Arabidopsis 査読有り

    Masanori Izumi, Jun Hidema, Hiroyuki Ishida

    Plant Signaling and Behavior 8 (8) 20130000 2013年8月

    DOI: 10.4161/psb.25023  

    ISSN:1559-2316 1559-2324

    詳細を見る 詳細を閉じる

    Autophagy is an intracellular process leading to vacuolar degradation of cytoplasmic components, which is important for nutrient recycling. Autophagic degradation of chloroplastic proteins via Rubisco-containing bodies is activated in leaves upon low sugar availability in Arabidopsis and our recent study reveals the contribution of autophagy to nighttime energy availability for growth. Whereas metabolic analysis supports that autophagic proteolysis provides a supply of alternative energy sources such as amino acids during sugar deficit, changes in a large number of metabolites due to autophagy deficiency are also observed. Here, we performed statistical characterization of that metabolic data. Principal component analysis clearly separated wild type and autophagy-deficient atg5 mutant samples, pointing to significant effects of autophagy deficiency on metabolite profiles in Arabidopsis leaves. Thirty-six and four metabolites were significantly increased and decreased in atg5 compared with wild type, respectively. These results imply that autophagic proteolysis is linked to plant metabolic processes. © 2013 Landes Bioscience.

  30. Crystal Structure of Rice Rubisco and Implications for Activation Induced by Positive Effectors NADPH and 6-Phosphogluconate

    Hiroyoshi Matsumura, Eiichi Mizohata, Hiroyuki Ishida, Ayako Kogami, Takeshi Ueno, Amane Makino, Tsuyoshi Inoue, Akiho Yokota, Tadahiko Mae, Yasushi Kai

    JOURNAL OF MOLECULAR BIOLOGY 422 (1) 75-86 2012年9月

    出版者・発行元:ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD

    DOI: 10.1016/j.jmb.2012.05.014  

    ISSN:0022-2836

    詳細を見る 詳細を閉じる

    The key enzyme of plant photosynthesis, D-ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), must be activated to become catalytically competent via the carbamylation of Lys201 of the large subunit and subsequent stabilization by Mg2+ coordination. Many biochemical studies have reported that reduced nicotinamide adenine dinucleotide phosphate (NADPH) and 6-phosphogluconate (6PG) function as positive effectors to promote activation. However, the structural mechanism remains unknown. Here, we have determined the crystal structures of activated rice Rubisco in complex with NADPH, 6PG, or 2-carboxy-D-arabinitol 1,5-bisphosphate (2CABP). The structures of the NADPH and 6PG complexes adopt open-state conformations, in which loop 6 at the catalytic site and some other loops are disordered. The structure of the 2CABP complex is in a closed state, similar to the previous 2CABP-bound activated structures from other sources. The catalytic sites of the NADPH and 6PG complexes are fully activated, despite the fact that bicarbonate (NaHCO3) was not added into the crystallization solution. In the catalytic site, NADPH does not interact with Mg2+ directly but interacts with Mg2+-coordinated water molecules, while 6PG interacts with Mg2+ directly. These observations suggest that the two effectors promote Rubisco activation by stabilizing the complex of Mg2+ and the carbamylated Lys201 with unique interactions and preventing its dissociation. The structure also reveals that the relaxed complex of the effectors (NADPH or 6PG), distinct from the tight-binding mode of 2CABP, would allow rapid exchange of the effectors in the catalytic sites by substrate D-ribulose 1,5-bisphosphate for catalysis in physiological conditions. (C) 2012 Elsevier Ltd. All rights reserved.

  31. The changes of leaf carbohydrate contents as a regulator of autophagic degradation of chloroplasts via rubisco-containing bodies during leaf senescence 招待有り 査読有り

    Masanori Izumi, Hiroyuki Ishida

    Plant Signaling and Behavior 6 (5) 685-687 2011年5月

    DOI: 10.4161/psb.6.5.14949  

    ISSN:1559-2316 1559-2324

    詳細を見る 詳細を閉じる

    Autophagy is an intracellular process for the vacuolar degradation of cytoplasmic components and is important for nutrient recycling during starvation. Chloroplasts can be partially mobilized to the vacuole by autophagy via spherical bodies named Rubisco-containing bodies (RCBs). Although chloroplasts contain approximately 80% of total leaf nitrogen and represent a major carbon and nitrogen source for recycling, the relationship between leaf nutrient status and RCB production remains unclear. We analyzed the effects of nutrient factors on the appearance of RCBs in Arabidopsis leaves and postulated that a close relationship exists between the autophagic degradation of chloroplasts via RCBs and leaf carbon status but not nitrogen status in autophagy. The importance of carbohydrates in RCB production during leaf senescence can be further argued. During nitrogen-limited senescence, as leaf carbohydrates were accumulated, RCB production was strongly suppressed. During the life span of leaves, RCB production increased with the progression of leaf expansion and senescence, while the production declined in late senescent leaves with a remarkable accumulation of carbohydrates, glucose and fructose. These results suggest that RCB production may be controlled by leaf carbon status during both induced and natural senescence. © 2011 Landes Bioscience.

  32. Cyclobutane pyrimidine dimer (CPD) photolyase repairs ultraviolet-B-induced CPDs in rice chloroplast and mitochondrial DNA 査読有り

    Masaaki Takahashi, Mika Teranishi, Hiroyuki Ishida, Junji Kawasaki, Atsuko Takeuchi, Tomoyuki Yamaya, Masao Watanabe, Amane Makino, Jun Hidema

    PLANT JOURNAL 66 (3) 433-442 2011年5月

    出版者・発行元:WILEY-BLACKWELL

    DOI: 10.1111/j.1365-313X.2011.04500.x  

    ISSN:0960-7412

    詳細を見る 詳細を閉じる

    Plants use sunlight as energy for photosynthesis; however, plant DNA is exposed to the harmful effects of ultraviolet-B (UV-B) radiation (280-320 nm) in the process. UV-B radiation damages nuclear, chloroplast and mitochondrial DNA by the formation of cyclobutane pyrimidine dimers (CPDs), which are the primary UV-B-induced DNA lesions, and are a principal cause of UV-B-induced growth inhibition in plants. Repair of CPDs is therefore essential for plant survival while exposed to UV-B-containing sunlight. Nuclear repair of the UV-B-induced CPDs involves the photoreversal of CPDs, photoreactivation, which is mediated by CPD photolyase that monomerizes the CPDs in DNA by using the energy of near-UV and visible light (300-500 nm). To date, the CPD repair processes in plant chloroplasts and mitochondria remain poorly understood. Here, we report the photoreactivation of CPDs in chloroplast and mitochondrial DNA in rice. Biochemical and subcellular localization analyses using rice strains with different levels of CPD photolyase activity and transgenic rice strains showed that full-length CPD photolyase is encoded by a single gene, not a splice variant, and is expressed and targeted not only to nuclei but also to chloroplasts and mitochondria. The results indicate that rice may have evolved a CPD photolyase that functions in chloroplasts, mitochondria and nuclei, and that contains DNA to protect cells from the harmful effects of UV-B radiation.

  33. Rubisco turnover and nitrogen in a leaf 招待有り

    Ishida, H, Suzuki, Y, Makino A

    Nitorgen assimilation in plants 277-285 2010年

  34. Protein Turnover in Grass Leaves 招待有り 査読有り

    Louis John Irving, Yuji Suzuki, Hiroyuki Ishida, Amane Makino

    ADVANCES IN BOTANICAL RESEARCH, VOL 54 54 139-182 2010年

    出版者・発行元:ACADEMIC PRESS LTD-ELSEVIER SCIENCE LTD

    DOI: 10.1016/S0065-2296(10)54004-7  

    ISSN:0065-2296

    詳細を見る 詳細を閉じる

    In this chapter, we discuss the processes of protein synthesis and degradation at the cellular, organ and whole-plant levels. In particular, we focus on the leaf protein Rubisco, which is important as both the most abundant form of N in most leaves and the carboxylating enzyme in photosynthesis. Chloroplasts contain the largest fraction of cellular N, divided approximately equally between soluble protein and thylakoid-associated N. Recently, small vesicles have been noted emanating from chloroplasts; however, there is considerable debate on the properties and regulation of these bodies. Similarly, recent investigations into the turnover of the D1 protein have questioned the orthodoxy view that D1 turnover is caused by oxidative fragmentation. The final two sections of this chapter look into the factors influencing the patterns of protein synthesis and degradation at the whole-leaf and whole-plant levels, and the implications that has for plant growth, development and productivity.

  35. Biochemical changes associated with in vivo RbcL fragmentation by reactive oxygen species under chilling-light conditions 査読有り

    R. Nakano, H. Ishida, M. Kobayashi, A. Makino, T. Mae

    PLANT BIOLOGY 12 (1) 35-45 2010年1月

    出版者・発行元:WILEY-BLACKWELL

    DOI: 10.1111/j.1438-8677.2009.00209.x  

    ISSN:1435-8603

    eISSN:1438-8677

    詳細を見る 詳細を閉じる

    During physiological stress, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) degradation is accelerated, which is considered to be one of the key factors responsible for photosynthetic decline. A recent study has shown that the large subunit (RbcL) of Rubisco is directly fragmented by hydroxyl radicals in Cucumis sativus leaves under chilling-light conditions. In the present study, we investigated biochemical aspects associated with this in vivo RbcL fragmentation by reactive oxygen species. RbcL fragmentation was observed in C. sativus and Phaseolus vulgaris, but not in Solanum lycopersicum, Glycine max, Oryza sativa, Triticum aestivum, Spinacia oleracea or Arabidopsis thaliana. In C. sativus and P. vulgaris, RbcL fragmentation followed the fragmentation of PsaB, while in the other species, PsaB fragmentation did not occur. In C. sativus and P. vulgaris, the activities of antioxidant enzymes decreased dramatically under chilling-light conditions, and the proportion of uncarbamylated Rubisco increased. These data suggest that in vivo RbcL fragmentation under chilling-light conditions is associated with a combination of events, namely, inactivation of antioxidant enzymes, destruction of photosystem I and an increase of uncarbamylated Rubisco, which can produce hydroxyl radicals via the Fenton reaction at the catalytic site of RbcL.

  36. The role of autophagy in nutrient starvation and aging 招待有り

    Yoshimoto K, Ishida H, Wada S, Ohsumi Y, Shirasu K

    Autophagy 2009年9月

  37. The analysis of factors affecting the creation of Rubisco-containing bodies(RCBs), a specific autophagic process for chloroplast degradation in plants

    Izumi M, Ishida H, Makino A

    Autophagy 2009年9月

  38. The chloroplast degradation in two different pathways in individually darkened leaves of Arabidopsis by autophagy

    Wada S, Ishida H, Yoshimoto K, Ohsumi Y, Makino A

    Autophagy 2009年9月

  39. Autophagy of whole and partial chloroplasts in individually darkened leaves A unique system in plants? 招待有り 査読有り

    Hiroyuki Ishida, Shinya Wada

    AUTOPHAGY 5 (5) 736-737 2009年7月

    出版者・発行元:LANDES BIOSCIENCE

    DOI: 10.4161/auto.5.5.8568  

    ISSN:1554-8627

    詳細を見る 詳細を閉じる

    Chloroplasts are the characteristic organelle of photoautotrophs. To acquire carbohydrates, the majority of leaf nitrogen is distributed to chloroplasts as photosynthetic proteins. During age-related senescence or under starvation conditions, chloroplasts become a major source of carbon and nitrogen for recycling. While bulk degradation of the cytosol and organelles must occur by autophagy in plants, the role of autophagy in chloroplast degradation is still unclear. Our recent results confirm the role of autophagy in both partial and whole chloroplast degradation, at least during promoted senescence of individually darkened leaves.

  40. Chloroplasts autophagy during senescence of individually darkened leaves 招待有り 査読有り

    Shinya Wada, Hiroyuki Ishida

    Plant Signaling and Behavior 4 (6) 565-567 2009年6月

    DOI: 10.4161/psb.4.6.8877  

    ISSN:1559-2316 1559-2324

    詳細を見る 詳細を閉じる

    We recently reported that autophagy plays a role in chloroplasts degradation in individually-darkened senescing leaves. Chloroplasts contain approximately 80% of total leaf nitrogen, mainly as photosynthetic proteins, predominantly ribulose 1, 5-bisphosphate carboxylase/oxygenase (Rubisco). During leaf senescence, chloroplast proteins are degraded as a major source of nitrogen for new growth. Concomitantly, while decreasing in size, chloroplasts undergo transformation to non-photosynthetic gerontoplasts. Likewise, over time the population of chloroplasts (gerontoplasts) in mesophyll cells also decreases. While bulk degradation of the cytosol and organelles is mediated by autophagy, the role of chloroplast degradation is still unclear. In our latest study, we darkened individual leaves to observe chloroplast autophagy during accelerated senescence. At the end of the treatment period chloroplasts were much smaller in wild-type than in the autophagy defective mutant, atg4a4b-1, with the number of chloroplasts decreasing only in wild-type. Visualizing the chloroplast fractions accumulated in the vacuole, we concluded that chloroplasts were degraded by two different pathways, one was partial degradation by small vesicles containing only stromal-component (Rubisco containing bodies RCBs) and the other was whole chloroplast degradation. Together, these pathways may explain the morphological attenuation of chloroplasts during leaf senescence and describe the fate of chloroplasts. © 2009 Landes Bioscience.

  41. Chloroplasts are partially mobilized to the vacuole by autophagy 招待有り 査読有り

    Hiroyuki Ishida, Kohki Yoshimoto

    AUTOPHAGY 4 (7) 961-962 2008年10月

    出版者・発行元:TAYLOR & FRANCIS INC

    ISSN:1554-8627

    eISSN:1554-8635

    詳細を見る 詳細を閉じる

    Excluding the central vacuole, chloroplasts constitute the largest compartment within the leaf cells of plants and contain approximately 80 percent of the total leaf nitrogen, mainly as proteins. Much of this nitrogen is allocated to the carbon-fixing enzyme in photosynthesis, Rubisco. During senescence, plants can mobilize nitrogen from chloroplasts in older leaves to other organs, such as developing seeds. Whereas bulk degradation of the cytosol and organelles in plants occurs by autophagy, the role of autophagy in the degradation of chloroplast proteins is still unclear. We have recently demonstrated that stroma-targeted green fluorescent protein (GFP), DsRed, and GFP-labeled Rubisco can be mobilized to the vacuole of living cells via Rubisco-containing bodies, in an ATG gene-dependent manner. Our results indicate the presence of a specific autophagic pathway for chloroplast stromal proteins, which does not cause chloroplast lysis. Here, we also discuss the involvement of stroma-filled tubules, stromules, which are important for the structural flexibility of the organelle, on the autophagic transfer of stromal proteins to the vacuole.

  42. Visualization of Rubisco-containing bodies derived from chloroplasts in living cells of Arabidopsis. 査読有り

    Ishida, H, Yoshimoto, K, Reisen, D, Makino, A, Ohsumi, Y, Hanson, M.R, Mae, T

    Photosynthesis. Energy from the sun 1207-1210 2008年9月

  43. Rubisco and photosynthesis in cereal crops 招待有り

    Makino, A, Ishida, H

    Tohoku Journal of Agricultural Research 58 127-135 2008年

  44. Upregulation of a tonoplast-localized cytochrome P450 during petal senescence in Petunia inflata 査読有り

    Yan Xu, Hiroyuki Ishida, Daniel Reisen, Maureen R. Hanson

    BMC PLANT BIOLOGY 6 (6) 8 2006年4月

    出版者・発行元:BIOMED CENTRAL LTD

    DOI: 10.1186/1471-2229-6-8  

    ISSN:1471-2229

    詳細を見る 詳細を閉じる

    Background: Gene expression in Petunia inflata petals undergoes major changes following compatible pollination. Severe flower wilting occurs reproducibly within 36 hours, providing an excellent model for investigation of petal senescence and programmed cell death. Expression of a number of genes and various enzyme activities involved in the degradation and remobilization of macromolecules have been found to be upregulated during the early stages of petal senescence. Results: By performing differential display of cDNAs during Petunia inflata petal senescence, a highly upregulated gene encoding a cytochrome P450 was identified. Analysis of the complete cDNA sequence revealed that the predicted protein is a member of the CYP74C family (CYP74C9) and is highly similar to a tomato CYP74C allene oxide synthase (AOS) that is known to be active on 9-hydroperoxides. Cloning of the petunia genomic DNA revealed an intronless gene with a promoter region that carries signals found in stress-responsive genes and potential binding sites for Myb transcription factors. Transcripts were present at detectable levels in root and stem, but were 40 times more abundant in flowers 36 hours after pollination. Ethylene and jasmonate treatment resulted in transitory increases in expression in detached flowers. A protein fusion of the CYP74C coding region to a C-terminal GFP was found to be located in the tonoplast. Conclusion: Though oxylipins, particularly jasmonates, are known to be involved in stress responses, the role of other products of CYP74 enzymes is less well understood. The identification of a CYP74C family member as a highly upregulated gene during petal senescence suggests that additional products of fatty acid metabolism may play important roles during programmed cell death. In contrast to the chloroplast localization of AOS proteins in the CYP74A subfamily, GFP fusion data indicates that the petunia CYP74C9 enzyme is in the tonoplast. This result suggests that the highly similar CYP74C enzymes that have been identified in two other Solanaceous plants may also be associated with the vacuole, an organelle known to have a prominent role in programmed cell death.

  45. In vivo fragmentation of the large subunit of ribulose-1,5-bisphosphate carboxylase by reactive oxygen species in an intact leaf of cucumber under chilling-light conditions 査読有り

    R Nakano, H Ishida, A Makino, T Mae

    PLANT AND CELL PHYSIOLOGY 47 (2) 270-276 2006年2月

    出版者・発行元:OXFORD UNIV PRESS

    DOI: 10.1093/pcp/pci245  

    ISSN:0032-0781

    詳細を見る 詳細を閉じる

    Previous studies have demonstrated that the large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase (Rubisco) is site-specifically cleaved by a hydroxyl radical (center dot OH) generated in the illuminated chloroplast lysates or by an artificial center dot OH-generating system. However, it is not known whether such cleavage of the LSU by reactive oxygen species (ROS) actually occurs in an intact leaf. When leaf discs of chilling-sensitive cucumber (Cucumis sativus L.) were illuminated at 4 degrees C, five major fragments of the LSU were observed. This fragmentation was completely inhibited by ROS scavengers, such as n-propyl gallate (for center dot OH) and 1,2-dihydroxybenzene-3,5-disulfonic acid (Tiron) (for superoxide). FeSO4 stimulated this fragmentation, whereas an iron-specific chelator, deferoxamine, suppressed it. Furthermore, such fragments were identical to those generated from the purified Rubisco by an center dot OH-generating system in vitro on two-dimensional PAGE. These results indicate that the direct fragmentation of the LSU by reacive oxygen species also occurs in an intact leaf.

  46. Ribulose-1,5-bisphosphate carboxylase/oxygenase is excluded from chloroplasts by specific bodies in senescing wheat and rice leaves

    Ishida H, Chiba A, Hikichi R, Nishizawa N.K, Makino A, Mae T

    Photosynthesis: Fundamental Aspects to Global Perspectives (2) 837-838 2005年

  47. Fragmentation of the large subunit of ribulose-1,5-bisphosphate carboxylase by reactive oxygen species occurs in vivo

    Nakano R, Ishida H, Makino A, Mae T

    Photosynthesis: Fundamental Aspects to Global Perspectives (1) 509-510 2005年

  48. Exclusion of ribulose-1,5-bisphosphate carboxylase/oxygenase from chloroplasts by specific bodies in naturally senescing leaves of wheat 査読有り

    A Chiba, H Ishida, NK Nishizawa, A Makino, T Mae

    PLANT AND CELL PHYSIOLOGY 44 (9) 914-921 2003年9月

    出版者・発行元:OXFORD UNIV PRESS

    DOI: 10.1093/pcp/pcg118  

    ISSN:0032-0781

    詳細を見る 詳細を閉じる

    Immunocytochemical electron-microscopic observation indicated that ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) and/or its degradation products are localized in small spherical bodies having a diameter of 0.4-1.2 mum in naturally senescing leaves of wheat (Triticum aestivum L.). These Rubisco-containing bodies (RCBs) were found in the cytoplasm and in the vacuole. RCBs contained another stromal protein, chloroplastic glutamine synthetase, but not thylakoid proteins. Ultrastructural analysis suggested that RCBs had double membranes, which seemed to be derived from the chloroplast envelope, and that RCBs were further surrounded by the other membrane structures in the cytoplasm. The appearance of RCBs was the most remarkable when the amount of Rubisco started to decrease at the early phase of leaf senescence. These results suggest that RCBs might be involved in the degradation process of Rubisco outside of chloroplasts during leaf senescence.

  49. The degradation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase into the 44-kDa fragment in the lysates of chloroplasts incubated in darkness 査読有り

    N Kokubun, H Ishida, A Makino, T Mae

    PLANT AND CELL PHYSIOLOGY 43 (11) 1390-1395 2002年11月

    出版者・発行元:OXFORD UNIV PRESS

    DOI: 10.1093/pcp/pcf159  

    ISSN:0032-0781

    詳細を見る 詳細を閉じる

    Lysates of chloroplasts isolated from naturally senescing wheat leaves were incubated in darkness. The 44-kDa fragment, lacking the N-terminal-side portion of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (LSU), was found by immunoblotting with the LSU site-specific antibodies. Analysis of its N-terminal amino acid sequence indicated that the LSU was specifically cleaved at the peptide bond between Phe-40 and Arg-41. The site was located on the surface of the molecule and faced outward. Such cleavage of the LSU has not been previously reported. It is indicated that the cleavage was triggered by an unknown protease existing in chloroplasts.

  50. Direct evidence for non-enzymatic fragmentation of chloroplastic glutamine synthetase by a reactive oxygen species 査読有り

    H Ishida, D Anzawa, N Kokubun, A Makino, T Mae

    PLANT CELL AND ENVIRONMENT 25 (5) 625-631 2002年5月

    出版者・発行元:BLACKWELL PUBLISHING LTD

    DOI: 10.1046/j.1365-3040.2002.00851.x  

    ISSN:0140-7791

    詳細を見る 詳細を閉じる

    Chloroplastic glutamine synthetase (GS: EC 6.3-1.2), the octamer of the 44 kDa subunit, is rapidly degraded under photo-oxidative stress conditions in leaves, chloroplasts, and chloroplast lysates. Recent studies have suggested that chloroplastic GS might be cleaved by the hydroxyl radical under such conditions (Thoenen Feller 1998; Australian Journal of Plant Physiology 25, 279-286; Palatnik, Carrillo & Valle 1999, Plant Physiology 121, 471-478). Herein, we present evidence which supports the above hypothesis. When the purified GS from wheat (Triticum aestivum L.) chloroplasts was exposed to the hydroxyl radical-generating system comprising H2O2-FeSO4-ascorbic acid or FeCl3-ascorbic acid, the GS subunit was degraded into four distinct fragments having apparent molecular masses of 39, 35, 32 and 28 kDa. The apparent molecular masses and isoelectric points of these fragments were identical to those of the respective fragments found in the illuminated lysates of chloroplasts. In addition, the appearance of the GS fragments was completely suppressed in the presence of the scavenger for the hydroxyl radical, n-propyl gallate, in the illuminated lysates of chloroplasts. These results strongly support the hypothesis that the primary cleavage of GS is directly driven by the hydroxyl radical, formed by Fenton reaction under photo-oxidative stress conditions in chloroplasts.

  51. Fe2+-catalyzed site-specific cleavage of the large subunit of ribulose 1,5-bisphosphate carboxylase close to the active site 査読有り

    S Luo, H Ishida, A Makino, T Mae

    JOURNAL OF BIOLOGICAL CHEMISTRY 277 (14) 12382-12387 2002年4月

    出版者・発行元:AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC

    DOI: 10.1074/jbc.M111072200  

    ISSN:0021-9258

    詳細を見る 詳細を閉じる

    Previous work has demonstrated that the large subunit (rbcL) of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCo) from wheat is cleaved at Gly-329 by the Fe (2+)/ascorbate/H2O2 system (Ishida, H., Makino, A., and Mae, T. (1999) J. Biol Chem. 274, 5222-5226). In this study, we found that the rbcL could also be cleaved into several other fragments by increasing the incubation time or the Fe2+ concentration. By combining immunoblotting with N-terminal amino acid sequencing, cleavage sites were identified at Gly-404, Gly-380, Gly-329, Ala-296, Asp-203, and Gly-122. Conformational analysis demonstrated that five of them are located in the alpha/beta-barrel, whereas Gly-122 is in the N-terminal domain but near the bound metal in the adjacent rbcL. All of these residues are at or very close to the active site and are just around the metal-binding site within a radius of 12 Angstrom. Furthermore, their C H-alpha groups are completely or partially exposed to the bound metal. A radical scavenger, activation of RuBisCo, or binding of a reaction-intermediate analogue to the activated RuBisCo, inhibited the fragmentation. These results strongly suggest that the rbeL is cleaved by reactive oxygen species generated at the metal-binding site and that proximity and favorable orientation are probably the most important parameters in determining the cleavage sites.

  52. Rubiscoは光合成に対して過剰に存在するか? 招待有り 査読有り

    石田 宏幸, 牧野 周, 前 忠彦

    化学と生物 37 (2) 113-114 1999年2月

    DOI: 10.1271/kagakutoseibutsu1962.37.113  

  53. Fragmentation of the large subunit of ribulose-1,5-bisphosphate carboxylase by reactive oxygen species occurs near Gly-329 査読有り

    H Ishida, A Makino, T Mae

    JOURNAL OF BIOLOGICAL CHEMISTRY 274 (8) 5222-5226 1999年2月

    出版者・発行元:AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC

    DOI: 10.1074/jbc.274.8.5222  

    ISSN:0021-9258

    詳細を見る 詳細を閉じる

    The large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) in the illuminated lysates of wheat (Triticum aestivum L.) chloroplasts is broken down by reactive oxygen radicals into 37- and 16-kDa polypeptides, Analysis of the terminal amino acid residues of both fragments revealed that the C terminus of the 37-kDa fragment was Ser-328 and the N terminus of the 16-kDa fragment was Thr-330. Gly-329, which links the two fragments, was missing, suggesting that the fragmentation of the LSU in the lysates driven by oxygen-free radicals occurs at Gly-329. Purified rubisco, exposed to a hydroxyl radical-generating system, was also cleaved at the same site of the LSU, The cleavage site was positioned at the N-terminal end of the flexible loop (loop 6) within the beta/alpha-barrel domain, constituting the catalytic site of rubisco. The binding of a reaction intermediate analogue, 2-carboxyarabinitol 1,5-bisphosphate, to the active form of rubisco completely protected the enzyme from the fragmentation. The fragmentation was differentially affected by CO2, Mg2+, ribulose 1,5-bisphosphate, or 2-carboxyarabinitol 1,5-bisphosphate, All these results indicate that the conformation of the catalytic site of the enzyme is involved as an important factor determining the breakdown of rubisco by reactive oxygen species. Reactive oxygen species generated at its catalytic site by a Fenton-type reaction may trigger the site-specific degradation of the LSU in the lysates of chloroplasts in the light.

  54. 12 コムギleaf segmentにおける光と酸化的ストレス条件下でのRubisco分解産物の出現について(東北支部講演会)

    清水 佐知子, 石田 宏幸, 牧野 周, 前 忠彦

    日本土壌肥料学会講演要旨集 45 357-357 1999年

    出版者・発行元:一般社団法人日本土壌肥料学会

    DOI: 10.20710/dohikouen.45.0_357_2  

    ISSN:0288-5840

  55. 10-2 単離葉緑体におけるRubiscoの分解 : 活性酸素によるRubisco大サブユニットの部位特異的な断片化と高次構造との関係(10.植物の代謝)

    石田 宏幸, 牧野 周, 前 忠彦

    日本土壌肥料学会講演要旨集 45 117-117 1999年

    出版者・発行元:一般社団法人日本土壌肥料学会

    DOI: 10.20710/dohikouen.45.0_117_2  

    ISSN:0288-5840

  56. Light-dependent fragmentation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase in chloroplasts isolated from wheat leaves 査読有り

    H Ishida, S Shimizu, A Makino, T Mae

    PLANTA 204 (3) 305-309 1998年3月

    出版者・発行元:SPRINGER VERLAG

    DOI: 10.1007/s004250050260  

    ISSN:0032-0935

    詳細を見る 詳細を閉じる

    The large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) is degraded into an N-terminal side fragment of 37 kDa and a C-terminal side fragment of 16 kDa by the hydroxyl radical in the lysates of chloroplasts in light (H. Ishida et al. 1997, Plant Cell Physiol 38: 471-479). In the present study, we demonstrate that this fragmentation of the LSU also occurs in the same manner in intact chloroplasts, and discuss the mechanisms of the fragmentation. The fragmentation of the LSU was observed when intact chloroplasts from wheat leaves were incubated under illumination in the presence of KCN or NaN3, which is a potent inhibitor of active oxygen-scavenging enzyme(s). The properties, such as molecular masses and cross-reactivities against the site-specific anti-LSU antibodies, of the fragments found in the chloroplasts were the same as those found in the lysates. These results indicate that, as in the lysates, the fragmentation of the LSU in the intact chloroplasts was also caused by the hydroxyl radical generated in light. The fragmentation of the LSU was completely inhibited by 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU), and only partially inhibited by methyl viologen in the lysates. The addition of hydrogen peroxide to the lysates stimulated LSU fragmentation in light, but did not induce any fragmentation in darkness. Thus, we conclude that both production of hydrogen peroxide and generation of the reducing power at thylakoid membranes in light are essential requirements for fragmentation of the LSU.

  57. 10-1 単離葉緑体におけるRubiscoの分解 : 光ストレス下でのRubisco大サブユニットの活性酸素による断片化とその切断部位の同定(10.植物の代謝)

    石田 宏幸, 牧野 周, 前 忠彦

    日本土壌肥料学会講演要旨集 44 90-90 1998年

    出版者・発行元:一般社団法人日本土壌肥料学会

    DOI: 10.20710/dohikouen.44.0_90_1  

    ISSN:0288-5840

  58. Determination of the cleavage site of the large subunit of rubisco by active oxygen species and its inhibition by CABP in the lysates of wheat chloroplasts

    H Ishida, A Makino, T Mae

    PHOTOSYNTHESIS: MECHANISMS AND EFFECTS, VOLS I-V (3) 2245-2248 1998年

    出版者・発行元:SPRINGER

  59. Light-dependent fragmentation of ribulose-1,5-bisphosphate carboxylase/oxygenase in chloroplasts isolated from wheat leaves

    H Ishida, S Shimizu, A Makino, T Mae

    PHOTOSYNTHESIS: MECHANISMS AND EFFECTS, VOLS I-V (3) 2249-2252 1998年

    出版者・発行元:SPRINGER

  60. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is fragmented into 37-kDa and 16-kDa polypeptides by active oxygen in the lysates of chloroplasts from primary leaves of wheat 査読有り

    H Ishida, Y Nishimori, M Sugisawa, A Makino, T Mae

    PLANT AND CELL PHYSIOLOGY 38 (4) 471-479 1997年4月

    出版者・発行元:JAPANESE SOC PLANT PHYSIOLOGISTS

    ISSN:0032-0781

    詳細を見る 詳細を閉じる

    Lysates of chloroplasts isolated from wheat (Triticum aestivum L. cv. Aoba) leaves were incubated on ice (pH 5.7) for 0 to 60 min in light (15 mu mol quanta m(-2) s(-1)), and degradation of the large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco: EC 4.1.1.39) was analyzed by applying immunoblotting with site-specific antibodies against the N-terminal, internal, and C-terminal amino acid sequences of the LSU of wheat Rubisco. The most dominant product of the breakdown of the LSU and that which was first to appear was an apparent molecular mass of 37-kDa fragment containing the N-terminal region of the LSU, A 16-kDa fragment containing the C-terminal region of the LSU was concomitantly seen, This fragmentation of the LSU was inhibited in the presence of EDTA or 1,10-phenanthroline, The addition of active oxygen scavengers, catalase (for H2O2) and n-propyl gallate (for hydroxyl radical) to the lysates also inhibited the fragmentation. When the purified Rubisco from wheat leaves was exposed to a hydroxyl radical-generating system comprising H2O2, FeSO4 and ascorbic acid, the LSU was degraded in the same manner as observed in the chloroplast lysates. The results suggest that the large subunit of Rubisco was directly degraded to the 37-kDa fragment containing the N-terminal region and the 16-kDa fragment containing the C-terminal region of the LSU by active oxygen, probably the hydroxyl radical, generated in the lysates of chloroplasts.

  61. 8 葉緑体破砕液中におけるRubisco大サブユニットの活性酸素による断片化(東北支部講演会)

    石田 宏幸, 牧野 周, 前 忠彦

    日本土壌肥料学会講演要旨集 43 318-318 1997年

    出版者・発行元:一般社団法人日本土壌肥料学会

    DOI: 10.20710/dohikouen.43.0_318_2  

    ISSN:0288-5840

  62. 10-10 葉の老化に伴う窒素転流の分子的基盤 : 葉緑体に局在するpeptidaseの精製とその酵素的性質(10.植物の代謝)

    鈴木 渉, 石田 宏幸, 寺田 文子, 牧野 周, 前 忠彦

    日本土壌肥料学会講演要旨集 43 104-104 1997年

    出版者・発行元:一般社団法人日本土壌肥料学会

    DOI: 10.20710/dohikouen.43.0_104_2  

    ISSN:0288-5840

︎全件表示 ︎最初の5件までを表示

MISC 52

  1. P4-1-12 イネの栄養成長と老化葉の窒素リサイクルにおけるオートファジーの役割の解析(ポスター,4-1 植物の多量栄養素,2015年度京都大会)

    和田 慎也, 林田 泰和, 泉 正範, 来須 孝光, 花俣 繁, 朽津 和幸, 牧野 周, 石田 宏幸

    日本土壌肥料学会講演要旨集 (61) 62-62 2015年9月9日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  2. 4-1-5 イネの発芽過程におけるオートファジーの役割(4-1 植物の多量栄養素,2015年度京都大会)

    和田 慎也, 中村 萌, 石田 宏幸, 牧野 周

    日本土壌肥料学会講演要旨集 (61) 49-49 2015年9月9日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  3. 4-1-6 シロイヌナズナのRCBおよび葉緑体オートファジーにおけるATI(ATG8-interacting proteins)の役割について(4-1 植物の多量栄養素,2015年度京都大会)

    石田 宏幸, 西村 翼, 泉 正範, Galili Gad, 牧野 周

    日本土壌肥料学会講演要旨集 (61) 49-49 2015年9月9日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  4. 4-1-3 シロイヌナズナにおける糖欠乏下でのオートファジーの役割の解析(4-1 植物の多量栄養素,2014年度東京大会)

    弘田 隆晃, 泉 正範, 牧野 周, 石田 宏幸

    日本土壌肥料学会講演要旨集 (60) 47-47 2014年9月9日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  5. 4-1-5 異なる窒素栄養条件下においてオートファジーの欠損がイネの窒素利用と成長に及ぼす影響の解析(4-1 植物の多量栄養素,2014年度東京大会)

    和田 慎也, 横浜 諒, 石田 宏幸, 牧野 周

    日本土壌肥料学会講演要旨集 (60) 48-48 2014年9月9日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  6. 4-1-4 シロイヌナズナにおける葉緑体オートファジーの機能解析 : 光障害時の役割について(4-1 植物の多量栄養素,2014年度東京大会)

    泉 正範, 石田 宏幸, 牧野 周, 日出間 純

    日本土壌肥料学会講演要旨集 (60) 48-48 2014年9月9日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  7. 4-2-1 シロイヌナズナにおけるオートファジーの欠損が各栄養素の欠乏時の生存と成長に及ぼす影響の解析(4-2 植物の微量栄養素,2014年度東京大会)

    江口 雅丈, 泉 正範, 牧野 周, 石田 宏幸

    日本土壌肥料学会講演要旨集 (60) 61-61 2014年9月9日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  8. 植物の栄養リサイクルと葉緑体のオートファジー

    石田 宏幸

    化学と生物 52 610-615 2014年9月

    DOI: 10.1271/kagakutoseibutsu.52.610  

  9. 5 シロイヌナズナにおけるオートファジーによる葉緑体分解と栄養素のリサイクル(東北支部講演会,2012年度各支部会)

    江口 雅丈, 牧野 周, 石田 宏幸

    日本土壌肥料学会講演要旨集 (59) 252-252 2013年9月11日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  10. 8 オートファジー関連遺伝子ATG7の欠損がイネのバイオマス及び窒素利用に及ぼす影響の解析(東北支部講演会,2012年度各支部会)

    和田 慎也, 林田 泰和, 来須 孝光, 朽津 和幸, 牧野 周, 石田 宏幸

    日本土壌肥料学会講演要旨集 (59) 253-253 2013年9月11日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  11. 4-1-17 イネにおけるRubisco-containing body/オートファジー系の可視化(4-1 植物の多量栄養素)

    泉 正範, 日出間 純, 近藤 依里, 牧野 周, 石田 宏幸

    日本土壌肥料学会講演要旨集 (59) 59-59 2013年9月11日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  12. 4-1-16 イネオートファジー欠損変異体Osatg7の生理解析 : (その2)葉の老化過程における窒素転流への影響について(4-1 植物の多量栄養素)

    林田 泰和, 和田 慎也, 来須 孝光, 朽津 和幸, 牧野 周, 石田 宏幸

    日本土壌肥料学会講演要旨集 (59) 59-59 2013年9月11日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  13. 4-1-15 イネオートファジー欠損変異体Osatg7の生理解析 : (その1)栄養成長期における個体生育について(4-1 植物の多量栄養素)

    和田 慎也, 林田 泰和, 来須 孝光, 朽津 和幸, 牧野 周, 石田 宏幸

    日本土壌肥料学会講演要旨集 (59) 58-58 2013年9月11日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  14. Deficiency of autophagy leads to significant changes of metabolic profiles in Arabidopsis

    Masanori Izumi, Jun Hidema, Hiroyuki Ishida

    Plant Signaling and Behavior 8 (8) 2013年8月

    DOI: 10.4161/psb.25023  

    ISSN:1559-2316 1559-2324

    詳細を見る 詳細を閉じる

    Autophagy is an intracellular process leading to vacuolar degradation of cytoplasmic components, which is important for nutrient recycling. Autophagic degradation of chloroplastic proteins via Rubisco-containing bodies is activated in leaves upon low sugar availability in Arabidopsis and our recent study reveals the contribution of autophagy to nighttime energy availability for growth. Whereas metabolic analysis supports that autophagic proteolysis provides a supply of alternative energy sources such as amino acids during sugar deficit, changes in a large number of metabolites due to autophagy deficiency are also observed. Here, we performed statistical characterization of that metabolic data. Principal component analysis clearly separated wild type and autophagy-deficient atg5 mutant samples, pointing to significant effects of autophagy deficiency on metabolite profiles in Arabidopsis leaves. Thirty-six and four metabolites were significantly increased and decreased in atg5 compared with wild type, respectively. These results imply that autophagic proteolysis is linked to plant metabolic processes. © 2013 Landes Bioscience.

  15. 9-5 シロイヌナズナ葉の栄養素リサイクルにおいてRCB/オートファジー系が担う役割の解析(9.植物の多量栄養素,2012年度鳥取大会)

    泉 正範, 日出間 純, 牧野 周, 石田 宏幸

    日本土壌肥料学会講演要旨集 (58) 54-54 2012年9月4日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  16. 9-4 葉の老化時のRubisco分解におけるオートファジーの貢献度の評価(9.植物の多量栄養素,2012年度鳥取大会)

    小野 佑樹, 和田 慎也, 泉 正範, 牧野 周, 石田 宏幸

    日本土壌肥料学会講演要旨集 (58) 54-54 2012年9月4日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  17. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd Edition) 査読有り

    Klionsky, D et, al, アルファベット順でIshida, H, 含む

    Autophagy 12 1-222 2012年4月

    DOI: 10.1080/15548627.2015.1100356  

    詳細を見る 詳細を閉じる

    impact factorが10以上である

  18. RBCS1A and RBCS3B, two major members within the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity

    Masanori Izumi, Honami Tsunoda, Yuji Suzuki, Amane Makino, Hiroyuki Ishida

    JOURNAL OF EXPERIMENTAL BOTANY 63 (5) 2159-2170 2012年3月

    出版者・発行元:OXFORD UNIV PRESS

    DOI: 10.1093/jxb/err434  

    ISSN:0022-0957

    詳細を見る 詳細を閉じる

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit (RBCS) is encoded by a nuclear RBCS multigene family in many plant species. The contribution of the RBCS multigenes to accumulation of Rubisco holoenzyme and photosynthetic characteristics remains unclear. T-DNA insertion mutants of RBCS1A (rbcs1a-1) and RBCS3B (rbcs3b-1) were isolated among the four Arabidopsis RBCS genes, and a double mutant (rbcs1a3b-1) was generated. RBCS1A mRNA was not detected in rbcs1a-1 and rbcs1a3b-1, while the RBCS3B mRNA level was suppressed to similar to 20% of the wild-type level in rbcs3b-1 and rbcs1a3b-1 leaves. As a result, total RBCS mRNA levels declined to 52, 79, and 23% of the wild-type level in rbcs1a-1, rbcs3b-1, and rbcs1a3b-1, respectively. Rubisco contents showed declines similar to total RBCS mRNA levels, and the ratio of Rubisco-nitrogen to total nitrogen was 62, 78, and 40% of the wild-type level in rbcs1a-1, rbcs3b-1, and rbcs1a3b-1, respectively. The effects of RBCS1A and RBCS3B mutations in rbcs1a3b-1 were clearly additive. The rates of CO2 assimilation at ambient CO2 of 40 Pa were reduced with decreased Rubisco contents in the respective mutant leaves. Although the RBCS composition in the Rubisco holoenzyme changed, the CO2 assimilation rates per unit of Rubisco content were the same irrespective of the genotype. These results clearly indicate that RBCS1A and RBCS3B contribute to accumulation of Rubisco in Arabidopsis leaves and that these genes work additively to yield sufficient Rubisco for photosynthetic capacity. It is also suggested that the RBCS composition in the Rubisco holoenzyme does not affect photosynthesis under the present ambient [CO2] conditions.

  19. 9-27 シロイヌナズナにおけるRBCS1AおよびRBCS3Bの変異が葉のRubisco量に与える影響の解析(9.植物の多量栄養素)

    泉 正範, 角田 穂奈美, 鈴木 雄二, 牧野 周, 石田 宏幸

    日本土壌肥料学会講演要旨集 (57) 66-66 2011年8月8日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  20. Cyclobutane pyrimidine dimer (CPD) photolyase repairs ultraviolet-B-induced CPDs in rice chloroplast and mitochondrial DNA

    Masaaki Takahashi, Mika Teranishi, Hiroyuki Ishida, Junji Kawasaki, Atsuko Takeuchi, Tomoyuki Yamaya, Masao Watanabe, Amane Makino, Jun Hidema

    PLANT JOURNAL 66 (3) 433-442 2011年5月

    出版者・発行元:WILEY-BLACKWELL

    DOI: 10.1111/j.1365-313X.2011.04500.x  

    ISSN:0960-7412

    詳細を見る 詳細を閉じる

    Plants use sunlight as energy for photosynthesis; however, plant DNA is exposed to the harmful effects of ultraviolet-B (UV-B) radiation (280-320 nm) in the process. UV-B radiation damages nuclear, chloroplast and mitochondrial DNA by the formation of cyclobutane pyrimidine dimers (CPDs), which are the primary UV-B-induced DNA lesions, and are a principal cause of UV-B-induced growth inhibition in plants. Repair of CPDs is therefore essential for plant survival while exposed to UV-B-containing sunlight. Nuclear repair of the UV-B-induced CPDs involves the photoreversal of CPDs, photoreactivation, which is mediated by CPD photolyase that monomerizes the CPDs in DNA by using the energy of near-UV and visible light (300-500 nm). To date, the CPD repair processes in plant chloroplasts and mitochondria remain poorly understood. Here, we report the photoreactivation of CPDs in chloroplast and mitochondrial DNA in rice. Biochemical and subcellular localization analyses using rice strains with different levels of CPD photolyase activity and transgenic rice strains showed that full-length CPD photolyase is encoded by a single gene, not a splice variant, and is expressed and targeted not only to nuclei but also to chloroplasts and mitochondria. The results indicate that rice may have evolved a CPD photolyase that functions in chloroplasts, mitochondria and nuclei, and that contains DNA to protect cells from the harmful effects of UV-B radiation.

  21. 9-21 シロイヌナズナ個別暗処理葉におけるオートファジー葉緑体分解機構(9.植物の多量栄養素,2010年度北海道大会)

    和田 慎也, 石田 宏幸, 吉本 光希, 大隅 良典, 牧野 周

    日本土壌肥料学会講演要旨集 (56) 60-60 2010年9月7日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  22. 9-17 シロイヌナズナにおけるRubisco-containing body(RCB)形成の栄養要因に対する応答の解析(9.植物の多量栄養素,2010年度北海道大会)

    泉 正範, 牧野 周, 石田 宏幸

    日本土壌肥料学会講演要旨集 (56) 59-59 2010年9月7日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  23. Rubisco turnover and photosynthesis in a leaf

    Ishida, H, Suzuki, Y, Makino, A

    Nitrogen Assimilation in Plants,Research Signpost 2010年

  24. 9-21 シロイヌナズナ切離葉における栄養要因がRubisco-containing body(RCB)の形成に及ぼす影響の解析(9.植物の多量栄養素,2009年度京都大会)

    泉 正範, 石田 宏幸, 牧野 周

    日本土壌肥料学会講演要旨集 (55) 71-71 2009年9月15日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  25. 葉緑体タンパク質の分解とオートファジー 招待有り

    石田 宏幸, 和田 慎也

    光合成研究 53 89-94 2008年12月

  26. 10-13 膜小胞Rubisco-containing body (RCB)を介した液胞におけるRubiscoの分解(10.植物の代謝,2008年度愛知大会)

    泉 正範, 石田 宏幸, 牧野 周

    日本土壌肥料学会講演要旨集 (54) 100-100 2008年9月9日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  27. 10-15 シロイヌナズナの個葉・個体暗処理による老化誘導と、オートファジーによる葉緑体分解(10.植物の代謝,2008年度愛知大会)

    和田 慎也, 石田 宏幸, 吉本 光希, 大隅 良典, 前 忠彦, 牧野 周

    日本土壌肥料学会講演要旨集 (54) 100-100 2008年9月9日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  28. Analysis of causal factors involved in Rubisco degradation by reactive oxygen species (ROS) in leaves under chilling-light stress

    Ryouhei Nakano, Hiroyuki Ishida, Amane Makino, Tadahiko Mae

    PLANT AND CELL PHYSIOLOGY 48 S96-S96 2007年

    出版者・発行元:OXFORD UNIV PRESS

    ISSN:0032-0781

  29. Changes in the amount of Rubisco, leaf nitrogen and chlorophyll, and chloroplast number in the senescing leaf of wild-type Arabidopsis thaliana and autophagy defected mutant, Atatg4a4b-I.

    Shinya Wada, Hiroyuki Ishida, Kohki Yoshimoto, Yoshinori Ohsumi, Amane Makino, Tadahiko Mae

    PLANT AND CELL PHYSIOLOGY 48 S196-S196 2007年

    出版者・発行元:OXFORD UNIV PRESS

    ISSN:0032-0781

  30. Involvement of ATG-dependent autophagic process in degradation of stromal proteins of chloroplasts

    Hiroyuki Ishida, Kohki Yoshimoto, Daniel Reisen, Amane Makino, Yoshinori Ohsumi, Maureen Hanson, Tadahiko Mae

    PLANT AND CELL PHYSIOLOGY 48 S196-S196 2007年

    出版者・発行元:OXFORD UNIV PRESS

    ISSN:0032-0781

  31. 10-11 シロイヌナズナにおける Rubisco-containing body (RCB) の可視化とオートファジーとの関連性の解析(10. 植物の代謝, 2006年度秋田大会講演要旨)

    石田 宏幸, 吉本 光希, Reisen Daniel, 牧野 周, 大隈 良典, Hanson Maureen, 前 忠彦

    日本土壌肥料学会講演要旨集 (52) 87-87 2006年9月5日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  32. 10-10 Rubisco 大サブユニットを44kDに分解する葉緑体プロテアーゼの精製とその特性解析(10. 植物の代謝, 2006年度秋田大会講演要旨)

    和田 慎也, 石田 宏幸, 牧野 周, 前 忠彦

    日本土壌肥料学会講演要旨集 (52) 87-87 2006年9月5日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  33. 10-9 植物種間差から見た低温ストレス下における活性酸素による Rubisco 分解(10. 植物の代謝, 2006年度秋田大会講演要旨)

    中野 良平, 石田 宏幸, 牧野 周, 前 忠彦

    日本土壌肥料学会講演要旨集 (52) 86-86 2006年9月5日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  34. Purification and identification of a protease that site-specifically degrades Rubisco-LSU in chloroplasts

    S Wada, H Ishida, A Makino, T Mae

    PLANT AND CELL PHYSIOLOGY 46 S35-S35 2005年

    出版者・発行元:OXFORD UNIV PRESS

    ISSN:0032-0781

  35. 細胞内でのRubisco分解の場について再考する 招待有り

    石田 宏幸

    日本光合成研究会会報 (41) 22-24 2004年11月

  36. Fragmentation of the large subunit of Rubisco by reactive oxygen species occurs in cucumber leaf discs chilled in the light

    R Nakano, H Ishida, A Makino, T Mae

    PLANT AND CELL PHYSIOLOGY 45 S161-S161 2004年

    出版者・発行元:OXFORD UNIV PRESS

    ISSN:0032-0781

  37. 10-1 活性酸素によるRubisco-LSUの断片化はin vivoでも起こる(10.植物の代謝)

    中野 良平, 石田 宏幸, 牧野 周, 前 忠彦

    日本土壌肥料学会講演要旨集 (49) 90-90 2003年8月20日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  38. 10-6 コムギ葉の老化過程におけるRubisco分解 : 免疫電顕とcDNAマイクロアレイによる解析(10.植物の代謝)

    石田 宏幸, 千葉 啓, 西澤 直子, 矢崎 潤史, 石川 雅弘, 藤井 文子, 真保 佳納子, 島谷 善平, 長田 夕子, 橋本 晶子, 太田 智弥, 佐藤 友紀, 宮本 智佳子, 本多 幸子, 小島 恵一, 佐々木 卓治, 岸本 直己, 菊池 尚志, 牧野 周, 前 忠彦

    日本土壌肥料学会講演要旨集 (49) 2003年8月

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  39. Exclusion of Rubisco from chloroplasts by the vesicle during natural senescence of wheat leaves

    A Chiba, H Ishida, NK Nishizawa, A Makino, T Mae

    PLANT AND CELL PHYSIOLOGY 44 S181-S181 2003年

    出版者・発行元:OXFORD UNIV PRESS

    ISSN:0032-0781

  40. Fe2+-catalyzed site-specific cleavage of the large subunit of ribulose 1,5-bisphosphate carboxylase close to the active site

    S Luo, H Ishida, A Makino, T Mae

    JOURNAL OF BIOLOGICAL CHEMISTRY 277 (14) 12382-12387 2002年4月

    出版者・発行元:AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC

    DOI: 10.1074/jbc.M111072200  

    ISSN:0021-9258

    詳細を見る 詳細を閉じる

    Previous work has demonstrated that the large subunit (rbcL) of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCo) from wheat is cleaved at Gly-329 by the Fe (2+)/ascorbate/H2O2 system (Ishida, H., Makino, A., and Mae, T. (1999) J. Biol Chem. 274, 5222-5226). In this study, we found that the rbcL could also be cleaved into several other fragments by increasing the incubation time or the Fe2+ concentration. By combining immunoblotting with N-terminal amino acid sequencing, cleavage sites were identified at Gly-404, Gly-380, Gly-329, Ala-296, Asp-203, and Gly-122. Conformational analysis demonstrated that five of them are located in the alpha/beta-barrel, whereas Gly-122 is in the N-terminal domain but near the bound metal in the adjacent rbcL. All of these residues are at or very close to the active site and are just around the metal-binding site within a radius of 12 Angstrom. Furthermore, their C H-alpha groups are completely or partially exposed to the bound metal. A radical scavenger, activation of RuBisCo, or binding of a reaction-intermediate analogue to the activated RuBisCo, inhibited the fragmentation. These results strongly suggest that the rbeL is cleaved by reactive oxygen species generated at the metal-binding site and that proximity and favorable orientation are probably the most important parameters in determining the cleavage sites.

  41. 5 葉緑体破砕液における暗所下でのRubisco大サブユニットの断片化について(東北支部講演会)

    国分 紀元, 石田 宏幸, 牧野 周, 前 忠彦

    日本土壌肥料学会講演要旨集 (48) 205-205 2002年3月25日

    出版者・発行元:一般社団法人日本土壌肥料学会

    ISSN:0288-5840

  42. Rubisco degradation in leaves of wheat during dark-induced senescence

    H Ishida, T Enomoto, A Chiba, A Makino, T Mae

    PLANT AND CELL PHYSIOLOGY 43 S66-S66 2002年

    出版者・発行元:OXFORD UNIV PRESS

    ISSN:0032-0781

  43. Two possible mechanisms for the Fe2+-mediated site-specific cleavage of the large subunit of ribulose-1,5-bisphosphate caxboxylase/oxygenase

    S Luo, H Ishida, A Makino, T Mae

    PLANT AND CELL PHYSIOLOGY 43 S66-S66 2002年

    出版者・発行元:OXFORD UNIV PRESS

    ISSN:0032-0781

  44. Fragmentation of the large subunit of Rubisco into the 44-kDa fragment in the lysates of chloroplasts from the primary leaves of wheat

    N Kokubun, H Ishida, A Makino, T Mae

    PLANT AND CELL PHYSIOLOGY 43 S67-S67 2002年

    出版者・発行元:OXFORD UNIV PRESS

    ISSN:0032-0781

  45. 光ストレスとRubiscoの分解

    石田 宏幸, 牧野 周, 前 忠彦

    化学と生物 38 8-9 2000年1月

    出版者・発行元:学会出版センター

  46. DEGRADATION OF GLUTAMINE SYNTHETASE MEDIATED BY REACTIVE OXYGEN SPECIES IN ILLUMINATED CHLOROPLASTS

    ISHIDA Hiroyuki, ANZAWA Daisuke, MAKINO Amane, MAE Tadahiko

    Plant and cell physiology 40 s120-s120 1999年3月

    ISSN:0032-0781

  47. Fragmentation of the large subunit of ribulose-1,5-bisphosphate carboxylase by reactive oxygen species occurs near Gly-329

    H Ishida, A Makino, T Mae

    JOURNAL OF BIOLOGICAL CHEMISTRY 274 (8) 5222-5226 1999年2月

    出版者・発行元:AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC

    DOI: 10.1074/jbc.274.8.5222  

    ISSN:0021-9258

    詳細を見る 詳細を閉じる

    The large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) in the illuminated lysates of wheat (Triticum aestivum L.) chloroplasts is broken down by reactive oxygen radicals into 37- and 16-kDa polypeptides, Analysis of the terminal amino acid residues of both fragments revealed that the C terminus of the 37-kDa fragment was Ser-328 and the N terminus of the 16-kDa fragment was Thr-330. Gly-329, which links the two fragments, was missing, suggesting that the fragmentation of the LSU in the lysates driven by oxygen-free radicals occurs at Gly-329. Purified rubisco, exposed to a hydroxyl radical-generating system, was also cleaved at the same site of the LSU, The cleavage site was positioned at the N-terminal end of the flexible loop (loop 6) within the beta/alpha-barrel domain, constituting the catalytic site of rubisco. The binding of a reaction intermediate analogue, 2-carboxyarabinitol 1,5-bisphosphate, to the active form of rubisco completely protected the enzyme from the fragmentation. The fragmentation was differentially affected by CO2, Mg2+, ribulose 1,5-bisphosphate, or 2-carboxyarabinitol 1,5-bisphosphate, All these results indicate that the conformation of the catalytic site of the enzyme is involved as an important factor determining the breakdown of rubisco by reactive oxygen species. Reactive oxygen species generated at its catalytic site by a Fenton-type reaction may trigger the site-specific degradation of the LSU in the lysates of chloroplasts in the light.

  48. Rubisco: Photosynthesis and its protein turnover

    Mae, T, Makino, A, Ishida, H

    Applied Biological Science. 5 (2) 79-87 1999年

    出版者・発行元:大阪府立大学生物資源開発センタ-

    ISSN:1341-5573

  49. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is fragmented into 37-kDa and 16-kDa polypeptides by active oxygen in the lysates of chloroplasts from primary leaves of wheat.

    H Ishida, Y Nishimori, M Sugisawa, A Makino, T Mae

    PLANT PHYSIOLOGY 114 (3) 1054-1054 1997年7月

    出版者・発行元:AMER SOC PLANT PHYSIOLOGISTS

    ISSN:0032-0889

  50. FRAGMENTATION OF THE LARGE SUBUNIT OF RUBISCO BY ACTIVE OXYGEN IN WHEAT CHLOROPLASTS UNDER ILLUMINATION

    ISHIDA Hiroyuki, SHIMIZU Sachiko, MAKINO Amane, MAE Tadahiko

    Plant and cell physiology 38 s75 1997年3月

    ISSN:0032-0781

  51. The Large Subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase is Fragmented into 37-kDa and 16-kDa Polypeptides by Active Oxygen in the Lysates of Chloroplasts from Primary Leaves of Wheat

    Hiroyuki Ishida, Yoshito Nishimori, Miki Sugisawa, Amane Makino, Tadahiko Mae

    Plant and Cell Physiology 38 (4) 471-479 1997年

    出版者・発行元:Japanese Society of Plant Physiologists

    DOI: 10.1093/oxfordjournals.pcp.a029191  

    ISSN:0032-0781

    詳細を見る 詳細を閉じる

    Lysates of chloroplasts isolated from wheat (Triticum aestivum L. cv. Aoba) leaves were incubated on ice (pH 5.7) for 0 to 60 min in light (15 μnol quanta m-2 s-1), and degradation of the large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco: EC 4.1.1.39) was analyzed by applying immunoblotting with site-specific antibodies against the N-terminal, internal, and C-terminal amino acid sequences of the LSU of wheat Rubisco. The most dominant product of the breakdown of the LSU and that which was first to appear was an apparent molecular mass of 37-kDa fragment containing the N-terminal region of the LSU. A 16-kDa fragment containing the C-terminal region of the LSU was concomitantly seen. This fragmentation of the LSU was inhibited in the presence of EDTA or 1,10-phenanthroline. The addition of active oxygen scavengers, catalase (for H2O2) and n-propyl gallate (for hydroxyl radical) to the lysates also inhibited the fragmentation. When the purified Rubisco from wheat leaves was exposed to a hydroxyl radical-generating system comprising H2O2, FeSO4 and ascorbic acid, the LSU was degraded in the same manner as observed in the chloroplast lysates. The results suggest that the large subunit of Rubisco was directly degraded to the 37-kDa fragment containing the N-terminal region and the 16-kDa fragment containing the C-terminal region of the LSU by active oxygen, probably the hydroxyl radical, generated in the lysates of chloroplasts.

  52. IMMUNOCHEMICAL ANALYSIS OF MULTIPLE SUBUNIT POLYPEPTIDES OF GLUTAMINE-SYNTHETASE IN METHIONINE SULFOXIMINE-SENSITIVE AND TOLERANT TOBACCO CELL-CULTURES

    T YAMAYA, H ISHIDA, K KAMACHI, K OJIMA

    PLANT AND CELL PHYSIOLOGY 31 (3) 325-331 1990年4月

    出版者・発行元:JAPANESE SOC PLANT PHYSIOLOGISTS

    ISSN:0032-0781

    詳細を見る 詳細を閉じる

    A methionine sulfoximine (MSX) tolerant cell line of tobacco (Nicotiana tabacum L. cv. Xanthi) cells was selected by culturing the wild-type cells in suspension media in the presence of MSX at a step-wise increase in its concentration (0.3 to 5 μM). Fifty per cent inhibition of growth occurred at 0.18 μM MSX for the wild-type cells whereas 4.65 μM was required for the tolerant cells. The tolerant cells possessed about 1.5-fold increase in glutamine synthetase (GS) activity. Kinetic experiments showed that an inhibitor constant for MSX was identical between GS isolated from these two cell types. Subunit polypeptides of GS in both cell types were analyzed with an immunoblotting method by using polyclonal antibody raised against a chloroplastic GS in spinach. A single polypeptide (41 kDa) was recognized by the antibody in wild-type cells, whereas two predominant polypeptides of 41 and 40 kDa were seen in the MSX tolerant cells. When the GS subunit polypeptides in the wild-type cells were examined with two-dimensional gel electrophoresis, two major and four minor polypeptides associating distinct charge at 41 kDa were detected. The extract from the MSX-tolerant cells had the same set of polypeptides at 41 kDa and in addition two major and some minor spots at 40 kDa. These results indicate that 1) tobacco GS is consisted of heterogeneous subunit polypeptides in surface charge and 2) MSX causes formation of additional multiple 40 kDa polypeptides which may be related to the tolerant nature of the selected cell line. © 1990. The Japanese Society of Plant Physiologists (JSPP).

︎全件表示 ︎最初の5件までを表示

講演・口頭発表等 44

  1. Autophagy and nutrient recycling in plants 国際会議

    Finnish-Japanese symposium 2016 2016年9月5日

  2. Autophagy provides substrates to amino acid catabolic pathways as an adaptive response to sugar starvation in Arabidopsis 国際会議

    The 17th International Congress on Photosynthesis Research 2016年8月7日

  3. Autophagy of chloroplasts as an adaptive response to sugar starvation in Arabidopsis 国際会議

    International Conference on Arabidopsis 2016年6月29日

  4. Chloroplast autophagy as an adaptive response to sugar starvation in Arabidopsis 国際会議

    Gordon Research conference ‘Mitochondria and Chloroplasts' 2016年6月19日

  5. 異なる窒素栄養条件下においてオートファジーの欠損がイネの窒素利用と成長に与える影響の解析

    横浜諒, 和田慎也, 菅野圭一, 小島創一, 山谷知行, 牧野周, 石田宏幸

    日本植物生理学会 2016年3月18日

  6. シロイヌナズナの光障害条件におけるオートファジーによる障害葉緑体の除去

    泉正範, 石田宏幸, 中村咲耶, 日出間純

    日本植物生理学会 2016年3月18日

  7. 光障害を受けた葉緑体を選択的に除去するクロロファジーの特性について

    中村咲耶, 泉正範, 石田宏幸, 日出間純

    日本植物生理学会 2016年3月18日

  8. イネの発芽過程におけるオートファジーの役割

    和田慎也, 中村 萌, 石田宏幸, 牧野 周

    日本土壌肥料学会 2015年9月9日

  9. シロイヌナズナのRCBおよび葉緑体オートファジーにおけるATI(ATG8-interacting proteins)の役割について

    石田宏幸, 西村 翼, 泉 正範, Gad Galili, 牧野 周

    日本土壌肥料学会 2015年9月9日

  10. イネの栄養成長と老化葉の窒素リサイクルにおけるオートファジーの役割の解析

    和田慎也, 林田泰和, 泉 正範, 来須孝光, 花俣 繁, 朽津和幸, 牧野 周, 石田宏幸

    日本土壌肥料学会 2015年9月9日

  11. シロイヌナズナにおけるオートファジーが亜鉛欠乏時に果たす役割

    江口雅丈, 吉本光希, 木村和彦, 泉 正範, 和田慎也, 牧野 周, 石田宏幸

    日本土壌肥料学会 2015年9月9日

  12. Establishment of monitoring methods for autophagy in rice reveals autophagic recycling of chloroplasts and root plastids during energy limitation

    Masanori Izumi, Jun Hidema, Shinya Wada, Eri Kondo, Takamitsu Kurusu, Kazuyuki Kuchitsu, Amane Makino, Hiroyuki Ishida

    日本植物生理学会 2015年3月16日

  13. シロイヌナズナの亜鉛欠乏条件下におけるオートファジーの役割

    江口雅丈, 木村和彦, 和田慎也, 泉正範, 牧野周, 石田宏幸

    日本植物生理学会 2015年3月16日

  14. シロイヌナズナの暗処理による炭素欠乏条件下でオートファジーは分岐鎖アミノ酸を代替呼吸基質として供給する

    弘田隆晃, 泉正範, 牧野周, 石田宏幸

    日本植物生理学会 2015年3月16日

  15. イネの栄養成長と老化葉の窒素リサイクルにおけるオートファジーの役割の解析

    和田慎也, 林田泰和, 泉正範, 来須孝光, 花俣繁, 朽津和幸, 牧野周, 石田宏幸

    日本植物生理学会 2015年3月16日

  16. 異なる窒素栄養条件下においてオートファジーの欠損がイネの窒素利用と成長に及ぼす影響の解析

    横浜諒, 和田慎也, 牧野周, 石田宏幸

    日本植物生理学会 2015年3月16日

  17. シロイヌナズナにおける糖欠乏下でのオートファジーの役割の解析

    弘田隆晃, 泉正範, 牧野周, 石田宏幸

    日本土壌肥料学会 2014年9月9日

  18. シロイヌナズナにおける葉緑体オートファジーの機能解析

    泉正範, 石田宏幸, 牧野周, 日出間純

    日本土壌肥料学会 2014年9月9日

  19. 異なる窒素栄養条件下においてオートファジーの欠損がイネの窒素利用と成長に及ぼす影響の解析

    和田慎也, 横浜諒, 石田宏幸, 牧野周

    日本土壌肥料学会 2014年9月9日

  20. シロイヌナズナにおけるオートファジーの欠損が各栄養素の欠乏時の生存と成長に及ぼす影響の解析

    江口雅丈, 泉正範, 牧野周, 石田宏幸

    日本土壌肥料学会 2014年9月9日

  21. Roles of autophagy in chloropalst recycling 国際会議

    Gordon Research conference ‘Mitochondria and Chloroplasts' 2014年7月6日

  22. 植物の栄養リサイクルと葉緑体のオートファジー

    石田宏幸

    2014年度 日本農芸化学会 シンポジウム 2014年3月28日

  23. オートファジーの欠損がイネの栄養成長と窒素転流へ与える影響の解析

    林田泰和, 和田慎也, 来須孝光, 朽津和幸, 牧野周, 石田宏幸

    第55回日本植物生理学会 2014年3月18日

  24. Autophagy for Photodamaged Chloroplast in Arabidopsis

    Masanori Izumi, Hiroyuki Ishida, Amane Makino, Jun Hidema

    第55回日本植物生理学会 2014年3月18日

  25. Roles of autophagy in Rubisco degradation during leaf senescence 国際会議

    6th European workshop on leaf senescence 2013年10月14日

  26. Identification of a rice autophagy defected mutant, OsATG7, and phenotypes in the life cycle 国際会議

    Shinya Wada, Yasukazu Hatyashida, Takamitsu Kurusu, Kazuyuki Kuchitsu, Amane Makino, Hiroyuki Ishida

    6th European workshop on leaf senescence 2013年10月14日

  27. Identification of a rice autophagy defected mutant, OsATG7, and phenotypes in the life cycle 国際会議

    Masanori Izumi, Takaaki Hirota, Jun Hidema, Amane Makino, Hiroyuki Ishida

    6th European workshop on leaf senescence 2013年10月14日

  28. イネオートファジー欠損変異体Osatg7 の生理解析- ( その1) 栄養成長期における個体生育について-

    和田慎也, 林田泰和, 来須孝光, 朽津和幸, 牧野周, 石田宏幸

    第59回日本土壌肥料学会 2013年9月13日

  29. イネオートファジー欠損変異体Osatg7 の生理解析-(その2)葉の老化過程における窒素転流への影響について-

    林田泰和, 和田慎也, 来須孝光, 朽津和幸, 牧野周, 石田宏幸

    第59回日本土壌肥料学会 2013年9月13日

  30. イネにおけるRubisco-containing body/ オートファジー系の可視化

    泉正範, 日手間純, 近藤依里, 牧野周, 石田宏幸

    第59回日本土壌肥料学会 2013年9月13日

  31. Autophagy contributes to Rubisco degradation during leaf senescence in Arabidopsis

    小野佑樹, 和田慎也, 泉正範, 牧野周, 石田宏幸

    第54回日本植物生理学会 2013年3月21日

    詳細を見る 詳細を閉じる

    本人がポスター発表

  32. シロイヌナズナのエネルギー利用におけるオートファジーの寄与について

    泉正範, 発表者, 日出間純, 牧野周, 石田宏幸

    第54回日本植物生理学会 2013年3月21日

  33. Autophagy of chloroplasts during leaf senescence 国際会議

    10th International Congress on Plant Molecular Biology 2012年10月21日

    詳細を見る 詳細を閉じる

    本人が発表。 国際学会の国外招待

  34. Rubisco分解におけるオートファジーの貢献度の評価

    小野佑樹, 和田慎也, 泉正範, 牧野周, 石田宏幸

    第58回日本土壌肥料学会 2012年9月4日

  35. シロイヌナズナ葉の栄養素リサイクルにおいてRCB/オートファジー系が担う役割の解析

    泉正範, 発表者, 日出間純, 牧野周, 石田宏幸

    第58回日本土壌肥料学会 2012年9月4日

  36. Contribution of autophagy to Rubisco degradation during leaf senescence 国際会議

    Gordon Research conference ‘Plant Senescence' 2012年7月

  37. Ishida, H., Izumi, M., Yoshimoto, K., Hanson, M.R., Makino, A. 国際会議

    Gordon Research conference ‘Mitochondria and Chloroplasts' 2010年7月

    詳細を見る 詳細を閉じる

    本人が発表者である

  38. Izumi, M., Makino, A., Ishida, H. 国際会議

    Gordon Research conference ‘Mitochondria and Chloroplasts' 2010年7月

  39. Wada, S., Ishida, H., Yoshimoto, K., Ohsumi, Y., Makino, A. 国際会議

    Gordon Research conference ‘Mitochondria and Chloroplasts' 2010年7月

  40. 泉 正範、石田 宏幸、牧野 周

    日本土壌肥料学会年会 2009年9月

  41. Visualization of Rubisco-containing bodies derived from chloroplasts in living cells of Arabidopsis 国際会議

    Ishida, H, Yoshimoto, K, Reisen, D, Makino, A, Ohsumi, Y, Hanson, M.R, Mae, T

    14th International congress of photosynthesis 2008年7月

  42. Possible involvement of ATG-dependent autophagic process in accumulation and degradation of Rubisco-containing body 国際会議

    Ishida H, Yoshimoto K, Reisen D, Makino A, Ohsumi Y, Hanson MR, Mae T

    The 53rd NIBB Conference 'Dynamic Organelles in Plants' 2006年6月

  43. Ribulose-1,5-bisphosphate carboxylase/oxygenase is excluded from chloroplasts by specific bodies in senescing wheat and rice leaves 国際会議

    Ishida, H, Chiba, A, Hikichi, R, Nishizawa, N.K, Makino, A, Mae, T

    13th International congress of photosynthesis 2004年9月

  44. Fragmentation of the large subunit of ribulose-1,5-bisphosphate carboxylase by reactive oxygen species occurs in vivo 国際会議

    Nakano R, Ishida, H, Makino, A, Mae, T

    13th International congress of photosynthesis 2004年9月

︎全件表示 ︎最初の5件までを表示

共同研究・競争的資金等の研究課題 23

  1. ピースミールクロロファジーの多様性と選択性賦与のメカニズム

    石田 宏幸

    2022年4月1日 ~ 2024年3月31日

  2. ピースミールオートファジーを介したフレキシブルな葉緑体機能衰退のメカニズム

    石田 宏幸

    2019年4月1日 ~ 2023年3月31日

    詳細を見る 詳細を閉じる

    葉緑体には窒素栄養の多くが分配されタンパク質として機能している。Rubiscoなどの主要な葉緑体タンパク質は葉の老化時や栄養飢餓条件下では分解され、転流窒素源や糖の代替呼吸基質として個体の成長や生存に重要なリソースとなる。オートファジーは様々な発生過程や飢餓などのストレス条件下で働く真核生物に普遍の細胞内分解システムである。葉緑体は特異小胞RCBとしてピースミールオートファジーにより液胞に運ばれ分解されるが、その詳細な機構は不明である。本研究では、葉緑体のピースミールオートファジーの機構について明らかにすることを目的とし、今年度は以下の解析をすすめた。 (1)オートファジー隔離膜による葉緑体包膜の選択的な認識機構の解析 先行研究で同定したレセプター候補遺伝子3種の欠損変異体の単離と、それらの変異体とgfs9-5変異体との2重変異体の作出を進め、そのうち2種類の2重変異体を獲得した。残り1種の変異体については交配後のF2の種子集団を得た。 (2)植物組織からの高純度なRCBおよびオートファゴソームの単離方法の検討 植物組織からの高純度なオートファゴソームの単離方法の確立を目指し、gfs9-5変異体から調製した細胞破砕画分を、OptiPrep の不連続密度勾配による超遠心分離に供し、葉緑体(プラスチド)の一部を内包するRCBとサイトゾルを内包する一般オートファゴソームを密度の違いに基づきそれぞれ分取した。純度に影響を及ぼすパラメータである破砕緩衝液の組成、超遠心分離の条件、免疫磁気ビーズの種類や免疫反応/洗浄液の組成などについて最適化を行った。

  3. ピースミールクロロファジーの多様性と選択性賦与のメカニズム

    石田 宏幸

    2020年4月1日 ~ 2022年3月31日

    詳細を見る 詳細を閉じる

    今年度は以下の項目を中心に解析を進めた。 1. RCB経路に選択性を賦与するメカニズムの解析:RCBに関わるレセプター候補の共免疫沈降解析による同定を行うため、gfs9-5にFLAG-AtATG8a(野生型)と、AIM binding siteに変異を持つ変異型を発現させる形質転換体を作出し、それらの中から組換えタンパク質の発現量が高い系統を複数選抜した。また共免疫沈降に用いる抗体ビーズについて検討し、シロイヌナズナのタンパク質粗抽出画分で高い特異性を発揮する抗体ビーズを選定した。 2. 葉緑体本体からのRCB切り離しのメカニズムの解析:RCB形成における葉緑体の増殖分裂に関わる既知因子の役割について、分裂装置の主要な構成因子のノックアウト変異がRCB経路に及ぼす影響について調べた。その結果、葉緑体分裂が特に異常となり葉緑体が巨大化するarc変異体に加えて、ftszやpdv変異体においてもRCB形成が確認された。またgfs9-5変異体に新たな変異原処理を行い、RCBを蓄積しないサプレッサー変異体のスクリーニングを進め、複数の変異体を獲得した。 3. ピースミールクロロファジー経路の多様性、特にRCBとATI-PS bodyの関係性の解析: ATI1/2がノックアウト/ダウンされたATI-KDでは、野生型と同レベルにPB/RCBの蓄積が見られた。CT-DsRedで可視化されるプラスチド/葉緑体由来のPB/RCBの中で、ATI1-GFPシグナルを持つ小胞(ATI1-PS body)の割合は20%程度であった。以上の結果から、ピールミールクロロファジーの多様性が改めて示唆された。

  4. 選択的オートファジーによる葉緑体のリサイクルと品質管理の分子基盤

    石田 宏幸, 牧野 周, 泉 正範, 和田 慎也, 江口 雅丈, 弘田 隆晃, 横浜 諒, 西村 翼, 中村 咲耶, 石田 ひろみ

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)

    研究種目:Grant-in-Aid for Scientific Research (B)

    研究機関:Tohoku University

    2015年4月1日 ~ 2019年3月31日

    詳細を見る 詳細を閉じる

    本研究では葉緑体の選択的オートファジーに関わる分子機構についての解明を目的として解析を進め、以下の成果を得た。(1)既知のATG8相互作用因子であるNBR1、ATG11およびATI1/2のRCB(Rubisco-containing body)経路ならびにクロロファジー(葉緑体の全分解経路)における役割について明らかにした。(2)RCB経路に異常をきたす新奇突然変異体を順遺伝学により単離した。(3)葉緑体オートファジーに関わる新奇レセプター候補を共免疫沈降とLC-MS/MS解析により探索した。

  5. 選択的オートファジーによる葉緑体のリサイクルと品質管理の分子基盤(国際共同研究強化)

    石田 宏幸

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research Fund for the Promotion of Joint International Research (Fostering Joint International Research)

    研究種目:Fund for the Promotion of Joint International Research (Fostering Joint International Research)

    研究機関:Tohoku University

    2016年 ~ 2019年

    詳細を見る 詳細を閉じる

    本研究では葉緑体の選択的オートファジーに関わる分子機構についての解明を目的として、米国コーネル大学Klaas van Wijk教授との共同研究を進め、以下の成果を得た。(1)順遺伝学により単離したRCB経路に異常をきたす新奇突然変異体の原因遺伝子を同定した。(2)葉緑体オートファジーに関わる小胞Rubisco-containing body(RCB)を密度勾配超遠心法により分画した。(3)葉緑体オートファジーに関わる新奇レセプター候補を共免疫沈降と液体クロマトグラフィー-質量分析法(LC-MS/MS解析)により探索した。

  6. 植物にATG5/ATG7非依存性のオートファジー経路は存在するか?

    石田 宏幸

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Exploratory Research

    研究種目:Grant-in-Aid for Challenging Exploratory Research

    研究機関:Tohoku University

    2014年4月1日 ~ 2017年3月31日

    詳細を見る 詳細を閉じる

    酵母で同定されたオートファジーに必須のコアATG遺伝子群は植物を含めた真核生物全般で保存されている。しかし、コアATGを欠損するシロイヌナズナ変異体は生活環を完結することから、従来型とは異なる新奇オートファジー経路の存在が示唆される。本研究では、シロイヌナズナにおけるATG非依存性の新奇オートファジー経路の存在について検証した。そしてATG5あるいはATG7を欠損する変異体においても葉の老化時にオートファジーで分解されることが知られる葉緑体の細胞あたりの数やサイズが減少することが確認された。また植物におけるATG非依存性のオートファジーの新奇の可視化方法について検討した。

  7. イネの生活環とオートファジー

    石田 宏幸, 牧野 周

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)

    研究種目:Grant-in-Aid for Scientific Research (B)

    研究機関:Tohoku University

    2012年4月1日 ~ 2016年3月31日

    詳細を見る 詳細を閉じる

    本研究では、イネの生活環においてオートファジーが果たす役割について解析を進め以下の成果を得た。(1) オートファジー欠損変異体イネを単離した。(2) 蛍光タンパク質マーカーを発現する形質転換体を作成しイネにおけるオートファジーの可視化・評価系を構築した。(3)変異体イネでは、生殖成長が遅延し出穂が遅れること、さらには花粉や葯の発達が不完全となり雄性不稔となることを明らかにした。(4) 変異体イネでは、 栄養成長期に葉緑体タンパク質の分解や窒素転流が滞り、個体の窒素利用効率や乾物生産が低下することを明らかにした。

  8. 植物の栄養飢餓とオートファジー

    石田 宏幸

    2013年4月1日 ~ 2015年3月31日

    詳細を見る 詳細を閉じる

    独立栄養生物である植物にとって、獲得した貴重な無機栄養素やエネルギーの体内での効率利用・リサイクルは、過酷な環境下での生存・成長戦略の一つとして重要な意味を持つ。本研究では真核生物に普遍的に備わる細胞自己分解システム・オートファジーや、オートファジーによる葉緑体タンパク質の特異的な分解経路(RCB経路)が、植物の栄養飢餓応答に果たす役割について明らかにすることを目的とし、今年度は以下の項目を中心に解析を進めた。 (1)各種無機栄養素の欠乏耐性とオートファジー シロイヌナズナのオートファジー欠損変異体(Atatg5-1, Atatg10-1)では、無機栄養素の中でも特に亜鉛の欠乏条件下で下位葉の枯死や生存率の低下が顕著であった。野生体では亜鉛欠乏によりオートファジーの誘導が確認された。atg変異体では、野生体に対して培地からの亜鉛の吸収量や葉や根への分配比に差がないことから、オートファジーに依存した亜鉛の細胞内リサイクルが亜鉛欠乏耐性に重要な役割を果たしていることが示唆された。 (2)光合成制限下でのエネルギー供給系としてのオートファジーの役割 光合成制限下ではオートファジーが糖に代わる呼吸基質としてのアミノ酸供給に寄与していることが示唆されている。今年度はAtatg変異体、アミノ酸異化代謝系酵素の欠損変異体(ivdh-1, d2hgdh1-2, etfqo-1, gdh1-2 gdh2-1)、及びそれらの多重変異体の暗処理下での表現形や遊離アミノ酸プールの変動を解析することで、オートファジーとアミノ酸異化代謝系の関係性を示した。

  9. 植物の栄養飢餓とオートファジー

    石田 宏幸

    2011年4月1日 ~ 2013年3月31日

    詳細を見る 詳細を閉じる

    本研究では真核生物に普遍的に備わる細胞自己分解システム「オートファジー」が、植物の栄養飢餓応答に果たす役割についてモデル植物であるシロイヌナズナを中心材料に分子レベルで明らかにすることを目的とした。本年度は特に以下の2項目について成果が得られた。 1)光合成制限環境下におけるエネルギー供給源としてのRCB/オートファジーの役割 葉や個体レベルでの栄養条件を様々な外的、内的条件で変化させ、それらが小胞RCB(Rubisco-containing body)の形成に及ぼす影響について調べた。その結果、RCBの形成は葉の炭水化物含量と特に密接に結びついていることが示された。そこで、炭素制限環境におけるRCB/オートファジーの役割について解析するため、オートファジーとスターチ代謝関連遺伝子の二重変異体の解析を進めた。スターチレス/オートファジー二重変異体では、短日条件において顕著な生育遅延が起き、生殖成長に至る前にほとんどの葉が枯死するというシビアな表現型が見られた。二重変異体では分岐鎖アミノ酸や芳香族アミノ酸含量が低下しており、これらアミノ酸の分解代謝に関わるIVDHやETF/ETFQO複合体のETFQOの遺伝子発現はスターチレス変異体や二重変異体で顕著に上昇していた。以上のことから、オートファジーが、炭素制限時にこれらアミノ酸分解代謝へのアミノ酸供給系として機能していることが示唆された。(Izumi et al., 2013, Plant Physiol.として発表 )。 2)葉の老化時のRubisco分解におけるRCB経路の貢献度の評価 RBCSと蛍光タンパク質(sGFP, mRFP)の融合タンパク質を発現する形質転換体を用いてRCB経路を定量評価する系を確立した。(Ono et al., 2013, Plant Cell Environ.として発表)。

  10. 老化葉における2つの異なるオートファジー経路を介した葉緑体分解の制御機構

    石田 宏幸

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (B)

    研究種目:Grant-in-Aid for Young Scientists (B)

    研究機関:Tohoku University

    2010年 ~ 2011年

    詳細を見る 詳細を閉じる

    本研究では老化葉で起こる葉緑体のオートファジーによる分解について、膜動態と関連する遺伝子について解析した。得られた結果は、(1)葉緑体は、RCB小胞とは異なり、液胞膜の陥入によって液胞内に取り込まれること、(2)葉緑体オートファジーにはオートファジー関連遺伝子(ATG)4に加えてATG2, 5, 7, 10が関与していること、が示唆された。

  11. 植物の巧妙な生存戦略 : オートファジー/小胞RCBを介した葉緑体タンパク質の分解

    石田 宏幸, 吉本 光希

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research on Innovative Areas (Research a proposed research project)

    研究種目:Grant-in-Aid for Scientific Research on Innovative Areas (Research a proposed research project)

    研究機関:Tohoku University

    2008年 ~ 2010年

    詳細を見る 詳細を閉じる

    本研究では植物の生存戦略として重要な細胞内分解システム、オートファジー、による葉緑体タンパク質の分解のメカニズムや生理的意義について解析した。そして、(1)葉緑体ストロマタンパク質を含む小胞RCBの形成がオートファジーに依存したものであること、(2)RCB形成は葉の炭水化物の飢餓と密接に関わっていること、(3)オートファジーはサリチル酸シグナリングの減衰や活性酸素種の消去を介して葉の老化を負に制御していること、を明かにした。

  12. 葉の光合成機能維持に向けたRubisco分解機構の分子遺伝学的解析

    石田 宏幸

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (B)

    研究種目:Grant-in-Aid for Young Scientists (B)

    研究機関:Tohoku University

    2008年 ~ 2009年

    詳細を見る 詳細を閉じる

    本研究では、光合成機能と栄養素のリサイクル機構の両面から植物の生長に深く関わる「老化葉におけるCO2固定酵素、Rubiscoの分解機構」について分子レベルで明らかにすることを目的とし、特に分子遺伝学解析に焦点を絞り、ストロミュール形成変異体やRubisco分解抑制変異体の選抜とそれらの原因遺伝子の同定を行い、研究基盤の整備を行った。またオートファジーによるRubisco分解機構についてメカニズムを明らかにした。

  13. 栄養素のリサイクル源としての葉緑体タンパク質の分解機構の解析

    石田 宏幸, 牧野 周

    2007年 ~ 2008年

    詳細を見る 詳細を閉じる

    本研究では栄養素のリサイクル機構を通して植物の環境応答性と深く関わる葉緑体タンパク質の分解機構について、主に葉緑体、液胞、および膜輸送系の動態の面から明らかにすることを目的とし、本年度は以下の2項目について実験を行った。 (1) RCB形成シグナルの解析 先に確立した葉緑体移行GFP発現シロイヌナズナと共焦点レーザー顕微鏡を用いたRCBの生葉における可視化法を駆使して、RCB経路の発現が、葉齢や生長段階(栄養生長と生殖生長)、窒素栄養や光条件によってどう調節されているのかについて解析した。切離葉においては、RCBは暗所や光合成が阻害されたりする状況下、すなわち炭水化物が枯渇する条件で多く蓄積した。 (2) 野生体およびatg変異体における葉緑体及び主要葉緑体タンパク質の消長の実態解析 atg変異体では野生体と比較して老化時のクロロフィルの減少が早く起こっていた。一方、Rubiscoについては老化初期に減少速度が遅延するものの、老化過程全体では野生体と同様の減少速度を示した。またatg変異体では葉緑体数は老化後期まで一定レベルに保たれていることがわかった。さらに老化が促進される条件である個葉暗処理下では、野生体ではRCBや葉緑体が液胞に輸送され、葉緑体数、サイズが減少するのに対し、atg変異体ではそのような移行は観察されず、処理期間を通して葉緑体数、サイズはほぼ一定に保持されていた。個葉暗処理下におけるRubiscoやクロロフィルの消長は自然老化過程とほぼ同様であった。

  14. 新規の葉緑体タンパク質分解系:RCB経路の分子機構

    石田 宏幸

    2006年 ~ 2007年

    詳細を見る 詳細を閉じる

    本研究では、窒素転流機構と光合成機能維持の両面から植物の生長に深く関わる老化葉における葉緑体タンパク質の分解機構について分子レベルで明らかにすることを目的とし、本年度は以下の2項目について実験を行った。 (1)RCB経路に関わるプロテオーム解析 先に確立した葉緑体移行GFP発現シロイヌナズナと共焦点レーザー顕微鏡を用いたRCBの生葉における可視化法を用いて、RCBが蓄積した液胞を単離し、これとRCBが蓄積していない液胞を2次元電気泳動に供し、両者で差異の見られるポリペプチドのスポット群を特定することを試みた。まずRCBを含む液胞を単離する方法について検討した。RCBを形成させた葉からセルラーゼとペクチナーゼを用いた酵素法によりプロトプラストを単離した。その後、プロトプラストを破砕し液胞を遊離させた後、パーコールによる密度勾配超遠心法により液胞を単離した。単離した液胞にはRCBの存在が確認された。しかし、液胞画分には少量ながら葉緑体の混入が認められた。よってRCBのプロテオーム解析を行うためにはさらなる精製方法の確立が必要であることがわかった。 (2)ストロミュール形成変異体の選抜 葉緑体移行GFP発現シロイヌナズナの種子にEMS処理を行い、突然変異体のプールを作成した。この中からストロミュールの形成に異常の見られる変異体を共焦点レーザー顕微鏡により選抜する方法を確立した。17000個体のM2植物から、複数の変異個体を得た。さらに得られた変異個体について戻し交配、異なるエコタイプとの交配を進め、原因遺伝子同定のための材料を整備した。

  15. 老化に特異な新規構造体Rubisco-containing bodyの特性解析

    前 忠彦, 牧野 周, 石田 宏幸, 鈴木 雄二

    2005年 ~ 2006年

    詳細を見る 詳細を閉じる

    葉緑体ストロマにターゲットされるGFPやDsRedを発現するシロイヌナズナ(CT-GFP,CT-DsRed)の緑葉を用いて、RCBの生細胞における可視化法について検討した。葉を個体から切離後、コンカナマイシンAあるいはE-64dを浸透させインキュベートすると、処理後10時間あたりからGFP蛍光をもつ小胞が液胞内に蓄積した。またCT-DsRedでも同様の結果が得られた。これらの小胞は直径が1μm前後でクロロフィルの自家蛍光を持たないなど、電顕におけるRCB像とよく似た特徴を有していた。抗GFP抗体及び抗RbcL (Rubisco-lATGe subunit)抗体を用いた二重免疫電顕による解析の結果、GFP小胞がRCBであることが確認された。このRCBの生細胞における可視化法を用いて、RCBの蓄積とオートファジー機構との関連性について調べた。その結果、オートファジーに必須の遺伝子ATGの欠損変異体(atg5-1)では、RCBの蓄積は全く見られないことがわかった。その代わりに、atg5-1では飢餓条件下でのインキュベート後、葉肉細胞において葉緑体から突出する管状の構造体、ストロミュールが出現していた。次にCT-DsRedとautophagosomeやautophagic bodyのマーカーであるGFP-ATG8aを共発現する形質転換体を用いて蛍光2重染色による解析を行った。阻害剤の存在下でインキュベートした葉では、CT-DsRedが葉緑体に加えて、液胞に存在するGFP-ATG8aで可視化された小胞、すなわちautophagic bodyにも局在することがわかった。またGFP-ATG8は稀に観察される短い球状のストロミュールにも局在していた。これらの結果から、RCBの蓄積はATGに依存したオートファジー機構により進行していることが示された。

  16. Rubiscoのターンオーバーの分子的背景と窒素栄養の関係の解析

    前 忠彦, 牧野 周, 石田 宏幸, 鈴木 雄二

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)

    研究種目:Grant-in-Aid for Scientific Research (B)

    研究機関:Tohoku University

    2003年 ~ 2006年

    詳細を見る 詳細を閉じる

    Rubiscoのターンオーバーの分子的基盤として葉の発達・衰退過程におけるRubiscoタンパク質の生成量と分解量の変動とrbcS及びrbcL mRNAsの変動の関係について調べた。Rubiscoの生成は葉の展開過程が最も盛んで展開終了時までに一生における生成の大部分を終え、老化課程での生成量は少なかった。またrbcS及びrbcL mRNAsは、ほぼ生成量に見合って変動していた。一方、培地の窒素栄養レベルは、Rubisco生成量、mRNAs量に反映され、窒素レベルが高いほど生成量、mRNAs量も多くなった。老化過程でも高い窒素栄養レベルで栽培するとRubiscoの生成が見られ、rbcS及びrbcL mRNAs量も増加していたが単位mRNA量当たりのRubisco生成量は老化の進行とともに減少した。いずれの状況下においても、Rubiscoの生成量は葉への窒素分配量とパラレルな関係にあり、転写のみならず翻訳レベルでの制御がインタクト葉では重要なRubisco量の調節因子として働いていることが明らかとなった。さらに、rbcSをコードする遺伝子は5種存在することからそれらの窒素応答、組織、器官特異的発現について調べたところ、これら遺伝子問で差異があることが明らかとなった。 Rubiscoの分解機構については、先に我々により見出された光照射下の単離葉緑体及びその破砕液におけるヒドロキシルラジカルを介したRubiscoの直接的な断片化が、インタクトなキュウリ葉においても実際に起こりうることが証明された。また葉には葉緑体以外にRubiscoを含む新規の小顆粒が存在することを我々が初めて見出し、Rubisco-containing body(RCB)との名称を与え、その生理学的な意義を探った。その結果、この顆粒の数は老化初期に特異的に多くなることが明らかとなった。RCBはRubiscoをはじめとする葉緑体のストローマ画分を含んでおりチラコイド画分は含んでいなかった。そして葉の老化過程やストレス下でのストローマ画分タンパク質のバルクの分解に関わっている可能性が示唆された。すなわち、葉緑体のストローマ画分を含む突出組織(ストロミュール?)の形成、隔離膜によるRCBの形成、オートファジー(様)機構を介したRCBの液胞への輸送、液胞でのRCBの分解との仮説を提唱した。

  17. コムギ老化葉におけるRubiscoの膜小胞を介した葉緑体化への排出と分解

    石田 宏幸

    2002年 ~ 2004年

    詳細を見る 詳細を閉じる

    RCBはRubiscoの分解が盛んな葉の老化初期に最も多く存在していることを先の研究において見出した。そしてRCBがリソソーム様のオルガネラに囲まれていること、およびRCBが液胞内に取り込まれていることを免疫電顕観察により見出した。この結果からRCBを介したRubiscoの葉緑体外への排出が葉の老化過程におけるRubisco分解において重要な役割を果たしていることが示唆されている。本年度は、コムギに加えて、モデル植物であるイネとアラビドプシスにおいてもRCBが見られるかどうか検討した。その結果、イネとアラビドプシスにおいてもRCBの存在が免疫電顕において確認された(Ishida et al.2005)。そこで葉緑体のストロマにターゲットされたGFPを発現するアラビドプシス形質転換体を用いて、RCBの生きた細胞内での可視化を試みた。その結果、液胞のATPase阻害剤であるコンカナマイシンAを加え、液胞内のpHを上昇させた葉の細胞において、RCBが液胞内に存在することを共焦点レーザー顕微鏡を用いて見出した。一方、コンカナマイシンA非存在下ではRCBは観察されなかった。共焦点レーザー顕微鏡において見出されたRCBは直径0.5-1.5マイクロメートルでありクロロフィル自家蛍光を有していなかった。この結果は電顕観察のものと一致した。以上の結果は、RCBが葉緑体外でのRubisco分解に関与していることを極めて強く示唆した(Ishida et al.投稿中)。

  18. イネ葉の老化に伴う機能衰退の分子機構-Rubisco合成能低下の要因解析-

    前 忠彦, 石田 宏幸

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)

    研究種目:Grant-in-Aid for Scientific Research (B)

    研究機関:Tohoku University

    2000年 ~ 2001年

    詳細を見る 詳細を閉じる

    1)イネ葉の一生を通してのRubiscoタンパク量の変動と単位時間当たりの生成量・分解量を調べ、それらと大、小サブユニットのmRNA量の変化、rbcS、rbcL遺伝子の量的変動、rRNA量の変動等との関係について解析した。その結果、葉の一生におけるRubisco生成の7-9割は、葉の展開終了時までに終えており、その生成量は葉の一生を通して大小サブユニットのmRNA量とおよそパラレルな関係にあることが分かった。葉の展開終了後は大小サブユニットのmRNA量、なかでもrbcS mRNA量のレベルは特に低く、Rubisco合成のポテンシャルが大きく低下していた。Rubiscoの分解は展開終了頃には既に始まり老化初期にピークがあった。老化過程における分解量は生成量をずっと上回っており、葉のRubisco量は分解速度によって主に支配されていることが明らかとなった。rbcL DNA量は葉の展開後半に最高値に達したのち徐々に減少していったが、rbcL mRNAほど急激には減少せず、mRNAレベルを直接の支配因子ではなかった。 2)我々は先に、活性酸素によりRubiscoが部位特異的に断片化されることを見出した。本研究においてはその断片化が活性中心の金属結合部位から12Å以内の範囲でのみ生じていること、およびその断片化がFe^<2+>、H_2O_2濃度依存的に生じること、さらにGS2においても同様な機構で部位特異的な断片化が生じることが明らかとなった。

  19. コムギ葉における活性酸素を介した葉緑体タンパク質の分解とその分子機構

    石田 宏幸

    2000年 ~ 2001年

    詳細を見る 詳細を閉じる

    これまでの研究では、Rubisco大サブユニットが光照射下の単離葉緑体において活性酸素により直接断片化されることが明らかとなっていた。また同様の系においてRubiscoと同じストロマタンパク質であるGS2も活性酸素の1種であるヒドロキシルラジカルを介した反応により主に39,35,32,28kDaのフラグメントに断片化されることが見出された。両タンパク質とも精製標品をヒドロキシルラジカルの発生系にさらした際に、葉緑体と同様の分解を受けることが見出された。そこで本年度は、Rubisco及びGS2のヒドロキシルラジカルによる切断部位の同定を行った。Rubisco大サブユニットについては、6箇所の切断部位が同定され、それらはGly-404,Gly-380,Gly-329,Ala-296,Asp-203,Gly-122であった。これらの切断部位は活性部位に近接しており、金属結合部位から12Å以内の距離に位置していた(Luo et al. 2002)。一方、GS2については4つの分解フラグメントについてそれぞれN末端アミノ酸配列分析を行った。そのうちの35kDaおよび28kDaのフラグメントについてはN末端がブロックされており同定することはできなかった。残りの39kDaおよび32kDaフラグメントのN末端は、共に分解を受けていないGS2のN末端配列と一致した。これらの結果から、GS2の切断部位のうちの2つについてはN末端からそれぞれ39kDaおよび32kDa離れた位置に存在していることが明らかとなった(Ishida et al. 2002)

  20. 葉の老化に伴う葉緑体タンパク質の分解機構 競争的資金

    制度名:Basic Science Research Program

    1999年4月 ~

  21. 窒素転流と光合成機能に関わるRubisco分解の分子機構

    前 忠彦, 石田 宏幸

    1999年 ~ 1999年

    詳細を見る 詳細を閉じる

    1.コムギの場合に見出されたのと同じ分子量のRubisco大サブユニットの37kDaフラグメントが、ホウレンソウ、オオムギ、エンドウから単離した葉緑体を同様に処理した場合にも見出された。また、オオムギ及びイネから精製したRubiscoをヒドロキシルラジカル発生系(Fe^<2+>-H_2O_2-ascoribic acid)に曝した場合にも、37kDaフラグメントおよび16kDaフラグメントの出現が認められた。これらの結果は、ヒドロキシラジカルによるRubisco大サブユニットの部位特異的な切断化は,高等植物のRubiscoに共通に見られる現象であることを示唆していた。そこで既報のデーターに基づき切断部位近傍のアミノ酸配列について比較した。Gly-329はいずれの植物種においても保存されていたが、その両端のアミノ酸については、ホウレンソウとオオムギがコムギと同様にSとTで、エンドウはAとT、イネはAとAであった。現在、オオムギ、エンドウ、イネのそれぞれのフラグメントの末端アミノ酸についての同定を行っている。 2.葉緑体ストローマ酵素のGS2も光照射下の葉緑体およびその破砕液中で部位特異的に断片化されることが明白となった。すなわち、単離葉緑体及びその破砕液を光照射下におくと、GS2はRubisco同様、部位特異的に断片化された。そしてこの断片化は、、金属キレーターのEDTA,1,10-phenanthrolineにより完全に阻害され、セリンプロテアーゼ、アスパルティックプロテアーゼ、システインプロテアーゼに対する阻害剤によっては阻害されなかった。また活性酸素のスキャベンジャーでは、カタラーゼ、n-propyl gallateが顕著な阻害効果を示した。さらにこの断片化は、GSの阻害剤で酵素に強固に結合するmethionine sulfoximine(MSX)により完全に阻害された。これらの結果は、我々がRubiscoで見出した結果と全く同様であり、GS2が相同の機構により断片化されていることを強く示唆している。

  22. 葉の機能の発達・衰退の生理・生化学-活性酸素を介したRubiscoの分解機構-

    前 忠彦, 石田 宏幸, 牧野 周

    提供機関:Japan Society for the Promotion of Science

    制度名:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)

    研究種目:Grant-in-Aid for Scientific Research (B)

    研究機関:TOHOKU UNIVERSITY

    1997年 ~ 1999年

    詳細を見る 詳細を閉じる

    Ribulose-1,5-bisphosphate carboxylase/oxygenase(Rubisco)はCO_2固定を担う酵素であると共に植物葉の全窒素の30%を占め,極めて多量に存在する特異なタンパク質である.それ故,Rubiscoの葉における分解は,光合成機能と窒素の再利用(リサイクル)の両面に深く関わっている。しかしその分解の分子機構は、ほとんど分かっていない。申請者は、まず葉の老化に伴うRubisco分解について生理学的立場から解析Rubiscoが葉からの全転流窒素の40%を占めること、葉の老化の初、中期においては葉緑体内で分解されること、そしてシンクによる分解の制御を受けること等を明らかにしてきた。そして、本特定領域研究においては、とくに葉緑体内における分解の分子機構に注目し、Rubiscoの大サブユニット(53kDa)が葉緑体およびその破砕液において光照射下で37kDaと16kDaのペプチドヘと部位特異的に断片化されることを見いだした。そして断片化には活性酸素が関与することを明らかにした(Ishida et al.,1997,1998、)。また、その切断は、触媒部位を構成するいわゆるループ6のGly329の近傍で起きることを明らかにした。以上より、Rubisco大サブユニットは、活性化のためのMg-binding siteに結合したFe^<2+>とCO_2 (O_2)のbinding siteに結合したH_2O_2から、いわゆるFenton反応によりヒドロキシルラジカルが生じ、それがGly-329或いはその両端を攻撃し切断に至らしめると推察した(Ishida et al.,1999)。また、葉緑体ストローマ酵素のGS2も光照射下の葉緑体およびその破砕液中でRubiscoと同様に部位特異的に断片化されることを明らかにした。

  23. コムギ葉緑体におけるRubisco分解の分子機構

    石田 宏幸

    1998年 ~ 1998年

︎全件表示 ︎最初の5件までを表示

社会貢献活動 8

  1. 日本学術振興会 特別研究員等審査会委員・専門委員

    2015年8月1日 ~ 2017年7月31日

    詳細を見る 詳細を閉じる

    日本学術振興会 特別研究員等の採用にかかる書面審査を行う

  2. 米国 科学研究費審査員

    2009年8月 ~ 2010年10月

    詳細を見る 詳細を閉じる

    研究者から応募された申請書のピアレビューを行う。

  3. 米国 科学研究費審査員

    2008年8月 ~ 2008年10月

    詳細を見る 詳細を閉じる

    研究者から応募された申請書のピアレビューを行う。

  4. オートファジーを可視化 イネ葉緑体の分解過程解明

    2015年4月24日 ~

  5. イネの葉緑体分解 追跡 東北大など 自食作用が関与

    2015年4月16日 ~

  6. 東北大など、イネもオートファジーで葉緑体を再利用、ライブセルイメージングで観察

    2015年4月14日 ~

  7. 東北大など 葉緑体の再利用過程を解明

    2015年4月10日 ~

  8. 稲の葉緑体再利用を可視化

    2015年4月10日 ~

︎全件表示 ︎最初の5件までを表示

その他 1

  1. 東北大学、学際科学国際高等研究センター「領域創成研究」

    詳細を見る 詳細を閉じる

    本研究では、コヒーレント光発生技術、分光技術、ラマン解析技術を利用することで、より簡便で正確なリン酸化・脱リン酸化タンパクの同定法、さらには非破壊法(細胞を壊さない)によるリン酸化タンパク質の動態検出方法を確立することを目指す。さらに、確立された技術を農学・生命科学の植物科学研究へと応用する。